Дыхание при повышенном и пониженном барометрическом давлении физиология

Классический
пример дыхания в условиях повышенного
барометрического давления – это дыхание
под водой при плавании с аквалангом. На
поверхности моря барометрическое
давление равняется 1 атмосфере. Погружение
под воду на каждые 10 метров добавляет
по 1 атмосфере (10 м – 2 атм.; 20 м – 3 атм.;
30 м – 4 атм.; и т.д.). Но если барометрическое
давление, по сравнению с уровнем моря,
увеличивается в 2, 3, 4, и т.д. раз, то и
парциальные давления газов в дыхательной
газовой смеси увеличиваются соответственно
в 2, 3, 4, и т.д. раз, что, в свою очередь,
приводит к высокой растворимости газов
в крови. Это вызывает ряд проблем, и
необходимость корректировки состава
дыхательной газовой смеси.
1)
Высокое растворение О2,
когда его в крови становится больше,
чем может быть связано гемоглобином,
опасно и требует корректировки состава
газовой смеси. На глубинах превышающих
40 м необходимо использовать дыхательные
газовые смеси не с 20,9 об. % О2,
как в атмосферном воздухе, а всего лишь
5 об. %; а на глубинах свыше 100 м – 2 об. %
О2.
2) Повышенное
растворение азота вызывает наркотическое
состояние (опьянение). На глубинах
превышающих 60 м, азотно-кислородная
дыхательная газовая смесь должна
заменяться гелиево-кислородной. Гелий
вызывает наркотический эффект на глубине
200-300 м. Исследуется возможность
использования водородно-кислородных
смесей на глубинах свыше 300 м и до 2-х км.
3) Необходимость
декомпрессии. При быстром подъёме
водолаза с глубины, растворённые в
крови, газы вскипают, и вызывают газовую
эмболию – закупорку сосудов. Подъём
водолаза с глубины 300 м требует 2-недельной
декомпрессии. Поэтому, при работе на
больших глубинах используется вахтовый
метод: водолаз живёт 2-3 недели в барокамере
под водой, затем его подвергают постепенной
декомпрессии.
При подъёме в горы,
барометрическое давление понижается,
а, следовательно, понижается и парциальное
давление кислорода. На высоте 5 км над
уровнем моря парциальное давление
кислорода становится < 50 мм рт.ст. (на
уровне моря ~ 100 мм рт. ст.). Возникает
острая гипоксия, а в ответ на неё, из-за
возбуждения хеморецепторов каротидного
синуса, возникает гипервентиляция. В
результате гипервентиляции развивается
гипокапния, т.е. вымывание углекислого
газа, импульсация с центральных
хеморецепторов снижается, возникает
гипопноэ.
У людей, живущих
высоко в горах, наблюдаются характерные
адаптивные приспособления организма:
1)
снижена чувствительность периферических
хеморецепторов к недостатку О2;
2) повышена
диффузионная способность лёгких;
3) увеличена
кислородная ёмкость крови за счёт
увеличения содержания гемоглобина в
крови;
4) снижено сродство
гемоглобина к кислороду (в том числе и
за счёт увеличения в эритроцитах
2,3-дифосфоглицерата), кислород легче
отдаётся в ткани.
У
неадаптированного человека, когда
парциальное давление О2
становится < 50 мм рт.ст., возникает
необходимость дышать газовой смесью с
повышенным содержанием О2,
а на высоте 9 км (где парциальное давление
О2
– 30 мм рт.ст.) – чистым О2.
На высоте 18 км необходим скафандр с
автономным атмосферным давлением.
Соседние файлы в папке Ответы
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Источник
Дыхание при пониженном атмосферном давлении. При подъеме на высоту животные и человек оказываются в условиях пониженного атмосферного давления. При этом развивается гипоксия (недостаток кислорода в организме) в результате низкого парциального давления кислорода во вдыхаемом воздухе. На высоте 5 км барометрическое давление составляет около 60 мм рт. ст. и насыщенность крови кислородом снижается до 80% , что способствует развитию горной болезни.
На высоте от 2,5 до 5 км повышается вентиляция легких, что вызвано стимуляцией каротидных хеморецепторов. Одновременно происходит повышение артериального давления и увеличение частоты сердечных сокращений. Эти реакции направлены на усиление снабжения тканей кислородом.
В случае увеличения высоты более 7 км могут наступить опасные для жизни нарушения дыхания, кровообращения и потеря сознания.
Длительное пребывание или обитание животных и людей в горной местности сопровождается акклиматизацией к кислородному голоданию, которая проявляется в следующем:
- • увеличивается концентрация эритроцитов в крови в результате усиления эритропоэза;
- • повышается содержание гемоглобина в крови и увеличивается ее кислородная емкость;
- • активизируется вентиляция легких;
- • повышается плотность кровеносных капилляров в тканях в результате увеличения их длины и извитости.
Дыхание при повышенном атмосферном давлении. При погружении животных и человека под воду возрастает атмосферное давление. Например, на глубине 10 м давление возрастает до 2 атм, на глубине 20 м — до 3 атм. В этом случае парциальное давление газов в альвеолярном воздухе возрастает и в крови растворяется большое количество газов — кислорода, азота. Само пребывание на большой глубине не опасно, но при быстром подъеме и переходе от повышенного давления к обычному растворенные в крови газы вскипают и вызывают газовую эмболию сосудов (кессонная болезнь), что может привести к смерти. Кессонная болезнь характеризуется болями в мышцах, головокружением, одышкой, потерей сознания. При медленном подъеме на поверхность газы постепенно удаляются из организма, что профилактирует развитие кессонной болезни. Особенно важны эти закономерности при проведении водолазных работ. В случае погружения водолазов на большие глубины для дыхания применяют гелиево-кислородные смеси. Водолазы поднимаются с глубины очень медленно, а после подъема проходят постепенную декомпрессию.
У некоторых животные выработались специальные дыхательные приспособительные реакции, позволяющие им нырять на определенную глубину. К таким животным относятся ластоногие, киты, выдра, калан и многие другие. Например, крупные киты могут погружаться на глубину 100-200 м и находиться под водой в течение 50—60 мин, а морские львы могут нырять на глубину до 750 м. Физиологически это обусловлено тем, что их дыхательный центр малочувствителен к накоплению в организме С02, что позволяет длительно задерживать дыхание и более полно использовать 02, содержащийся в крови и легких. Кроме того, их мышцы богаты миоглобином. Миоглобин — красный железосодержащий белок (специализированная разновидность гемоглобина), находящийся в сердечной и скелетной мышцах и активно переносящий 02. Так, в скелетных мышцах лошадей и человека содержится 4—9 мг миог- лобина на 1 г массы мышц, а у морских львов — 55—75 мг/г.
Источник
Барометрическое давление воздуха при спуске под воду на каждые 10,4 м глубины увеличивается на 1 атм. Повышенное давление существует также в кессонах и при постройке тоннелей, мостов, гидростанций. Человек в таких случаях может находиться под давлением не свыше 505400 Па. Частота дыхания при этом уменьшается на 2-4 в 1 мин. Вдох становится легче и короче, выдох затруднен и удлинен. Газообмен не изменяется или немного повышен. При повышенном давлении воздуха количество эритроцитов в крови уменьшается, что связано с их накоплением в кровяных депо. Чем дольше человек находится в условиях повышенного давления и чем оно выше, тем больше азота растворяется в его крови.
При быстром переходе от повышенного давления к нормальному возникает опасность «кессонной болезни», которая выражается в том, что начинается выделение азота из тканей и крови. Пузырьки выделяющегося азота могут закупорить мелкие кровеносные сосуды. При закупорке кровеносных сосудов мозга наступают параличи и смерть. Безопасность подъема в условия нормального давления обеспечивается его постепенностью. Подъем с остановками и вдыхание O2, ускоряющее выделение азота из организма, полностью устраняют опасность «кессонной болезни».
При дыхании кислородом в маске при повышенном давлении выдох становится активным, а вдох — пассивным, что приводит к перестройке нервной регуляции дыхания. Частота дыхания изменяется мало, а глубина его возрастает значительно. Легочная вентиляция увеличивается более чем в 2-3 раза. В результате гипервентиляции легких происходит избыточное удаление CO2 и давление СO2 в альвеолярном воздухе падает с 5320 Па до 3325 Па и ниже, что создает угрозу гипокапнии — падения содержания углекислоты в крови. В грудной полости создается положительное давление вместо отрицательного, что нарушает кровообращение в большом и малом кругах. Повышенное венозное давление компенсирует избыток давление в легких.
Снижение барометрического давления ведет к уменьшению парциального напряжения кислорода во всех звеньях кислородтранспортной системы организма, хотя усиленная легочная вентиляция и другие физиологические механизмы препятствуют снижению содержания кислорода в крови и других тканях тела.
В результате вблизи митохондрий давление кислорода может быть равно 10 мм рт. ст. на уровне моря и около 5 мм рт. ст даже на высоте 5600 м. Такое давление все еще достаточно, чтобы обеспечить оптимальные условия для протекания окислительных ферментативных реакций в клетках тела.
ФИЗИОЛОГИЯ КРОВООБРАЩЕНИЯ.
1. Кровообращение. Основы гемодинамики. Факторы, обеспечивающие по-
ступательное движение крови.
Кровообращение – это один из наиболее важных процессов, происходящих в живых организмах. Раздел биофизики, изучающий законы движения крови по сосудистой системе, называют гемодинамикой (греч. haima – кровь). Общие законы течения жидкости, изучаемые гидродинамикой, установлены в рамках классической физики и являются основой для описания сложных гемодинамических процессов в живом организме. Однако свойства крови во многом отличны от свойств применяемых в технике жидкостей, а обладающие упругими стенками и многократно ветвящиеся кровеносные сосуды значительно отличаются, например, от системы водопроводных труб. Поэтому биофизика рассматривает лишь упрощѐнную модель кровообращения.
Для понимания многих физиологических явлений необходимо знать связь между давлением и скоростью движения крови, а также зависимость этих величин от свойств крови, кровеносных сосудов и от работы сердца. На основе этих количественных закономерностей возможна разработка методов диагностики и лечения целого ряда заболеваний.
Одной из особенностей физической моделисердечно-сосудистойсистемы является эластичность еѐ стенок. Под эластичностью понимают способность материала или изделия испытывать более или менее значительные упругие обратимые деформации при сравнительно небольших усилиях.
Стенки кровеносных сосудов неодинаковы по своему строению. Аорта и крупные артерии имеют стенки, состоящие, помимо мышечных волокон, из эластина и коллагена. Эластин допускает деформации до200-300%,коллаген до 10%. Артериолы состоят полностью только из мышечной ткани, растяжимость которых значительно меньше. Стенки же капилляров не покрыты ни эластичной, ни мышечной тканью.
Течение жидкости по трубам (сосудам) с эластичными стенками обладает определѐнной спецификой. При постоянном давлении эластичность стенок трубки не имеет существенного значения. Например, можно наблюдать одинаковое непрерывное стационарное вытекание жидкости из стеклянной (жѐсткой) и резиновой (эластичной) трубок.
Если через трубки пропускать пульсирующий поток, используя для этой цели периодически действующий насос, то характер истечения жидкости будет различным: из жѐсткой трубки – прерывистый, из эластичной – непрерывный. Когда такой насос проталкивает жидкость в трубу с эластичными стенками, уже заполненную жидкостью, то давление в трубке повышается, стенка еѐ растягивается и вмещает избыток жидкости. Затем, когда давление со стороны насоса падает, стенка трубки сокращается и потенциальная энергия стенки переходит в кинетическую энергию жидкости,
врезультате чего избыток жидкости из начального участка трубы переходит
вследующий еѐ участок, стенка которого сначала тоже растягивается, а затем, сжимаясь, перегоняет жидкость в остальные части трубы и т.д. Растяжение и постепенное сжатие стенок эластичной трубы обеспечивает более равномерное протекание в ней жидкости при пульсирующем насосе.
Другой особенностью сердечно-сосудистой системы является то, что она представляет замкнутую, многократно разветвлѐнную и заполненную жидкостью систему трубок, движение жидкости, в которой происходит под действием ритмически работающего нагнетательного насоса (сердца). Из рис.1 видно последовательное соединение аорты(1-2),артерий и артероил(2-3),капилляров(3-4),венул(4-5)и вен(5-6),а такжепараллельное соединение артерий и артериол, капилляров и венул.
Общее гидравлическое сопротивление этих соединений можно определить по аналогии с законами соединения резисторов: для последовательного соединения – Z=Z1+Z2+…+Zn; для параллельного –
Рассмотрим гемодинамические показатели в разных участках сосудистой системы. Гидравлическое сопротивление Z в значительной
степени зависит от радиуса сосуда Z ~ R14 . Отношение радиусов для различных участков сосудистой системы: Rаорт : Rар : Rкап ≈ 3000:500:1, поэтому можно записать соотношение Zкап>Zар>Zаорт. Площадь суммарного просвета всех капилляров в500-600раз больше поперечного сечения аорты.
По закону неразрывности струи это означает, что кап 5001 аорт . И если в аорте средняя скорость равна примерно 0,5м/с, то в капиллярах 0,3-0,5мм/с. Именно в капиллярной сети при медленной скорости движения происходит обмен веществ между кровью и тканями. На рис.2 приведена кривая (1) распределения линейных скоростей вдоль сосудистой системы.
При сокращении сердца давление крови в аорте испытывает колебания. Рассмотрим среднее давление за период. Падение среднего давления вдоль сосудов может быть описано законом Пуазейля.
Сердце выбрасывает кровь под средним давлением pср. По мере продвижения по сосудам среднее давление падает. Поскольку Q=const, а Zкап>Zар>Zаорт, то для средних значений падения давления: pкап> pар> pаорт. В крупных сосудах среднее давление падает всего на 15%, а в мелких на 85%. Это означает, что большая часть энергии, затрачиваемой левым желудочком сердца на изгнание крови, расходуется на еѐ течение по мелким сосудам. Распределение давления (превышение над атмосферным) в различных отделах сосудистого русла представлено на рис.2 (кривая 2). Отрицательное значение давления означает, что оно ниже атмосферного. Заштрихованная область соответствует колебанию давления: pс – систолическое давление ≈ 120 мм.рт.ст.; pд – диастолическое давление ≈ 80 мм.тр.ст.
Движение крови по артериям обусловлено следующими факторами:
1. Работой сердца, обеспечивающего восполнение энергозатрат системы кровообращения.
2. Упругостью стенок эластических сосудов. В период систолы энергия систолической порции крови переходит в энергию деформации сосудистой стенки. Во время диастолы стенка сокращается и ее потенциальная энергия переходит в кинетическую. Это способствует поддержанию снижающегося артериального давления и сглаживанию пульсаций артериального кровотока.
3. Разность давлений в начале и конце сосудистого русла. Она возникает в результате затраты энергии на преодоление сопротивления току крови. Сопротивление кровотоку в сосудах зависит от вязкости крови, длины и, в основном, от диаметра сосудов. Чем он меньше, тем больше сопротивление, а следовательно разность давления в начале и конце сосуда. В сосудистой системе сопротивление изменяется неравномерно. Поэтому неравномерно снижается и кровяное давление. В артериях оно уменьшается на 10% , артериолах и капиллярах на 85%, венах на 5 %. Таким образом, наибольший вклад в общее периферическое сопротивление (ОПС) вносят сосуды резистивного и обменного типа. Стенки вен более тонкие и растяжимые, чем у артерий. Энергия сердечных сокращений в основном уже затрачена на преодоление сопротивления артериального русла. Поэтому давление в венах невысокое и требуются дополнительные механизмы, способствующих венозному возврату к сердцу.
Венозный кровоток обеспечивают следующие факторы:
1. разность давлений в начале и конце венозного русла;
2. сокращения скелетных мышц при движении, в результате которых кровь выталкивается из периферических вен к правому предсердию;
3. присасывающее действие грудной клетки. На вдохе давление в ней становится отрицательным, что способствует венозному кровотоку;
4. присасывающее действие правого предсердия в период его диастолы. Расширение его полости приводит к появлению отрицательного давления в нем;
5. сокращения гладких мышц вен.
Движение крови по венам к сердцу связано и с тем, что в них имеются выпячивания стенок, которые выполняют роль клапанов.
Источник
Дыхание при пониженном атмосферном давлении
При полетах на больших высотах или при подъеме на горные вершины наблюдаются нарушения в жизнедеятельности организма, получившие название высотной, или горной, болезни.
Высота, на которой наступают первые проявления горной болезни, индивидуальна, она колеблется в пределах от 4000 до 5000 м. Наблюдения показывают, что до указанной высоты человек обычно может подниматься, не испытывая заметных нарушений в отправлении жизненно важных функций своего организма.
Нарушения, которые наступают на больших высотах, заключаются в основном в следующем: учащается пульс, появляются слабость мышц и их судороги, дыхание становится учащенным, теряется острота слуха и зрения, появляются головная боль, чувство усталости и иногда нервно-психические расстройства, оканчивающиеся обмороком.
Рис. Искусственное дыхание
Для изучения явлений, наступающих при подъеме на значительные высоты, используются специальные герметически скрываемые камеры, в которых по желанию исследователя при помощи специального приспособления можно создать условия, соответствующие той или другой высоте. Такие камеры называются барокамерами.
При наличии барокамер в значительной мере отпадает необходимость изучать изменения, наступающие в организме на высотах, в естественных условиях, так как их можно исследовать,создав соответствующие условия в барокамере.
Изучение горной оолезни показало, что нарушения, которые наблюдаются на высотах, связаны с недостаточным поступлением кислорода в организм: на высоте 5500 м давление становится равным 380 мм рт. ст., т. е. по сравнению с давлением на поверхности земли падает наполовину. Резко снижается и парциальное давление кислорода. Если при атмосферном давлении 760 мм рт. ст. парциальное давление кислорода равно 159 мм, то уже на высоте 5500 м оно падает почти до 80мм. Такое понижение парциального давления вызывает от-осительно недостаточное насыщение крови кислородом и следовательно, недостаточное снабжение им нервной ткани,мышц и других органов. Наступает так называемое кислородное голодание, или а н о к с и я тканей и нервной системы.
Большое значение для борьбы с горной болезнью имеет тренировка. Для тренировки очень широко применяются барокамеры. В результате тренировки организм приобретает возможность реагировать на изменение давления рядом физиологических приспособлений.
При подъеме на высоту увеличивается вентиляция легких путем учащения и углубления дыхания; благодаря этому насыщение крови кислородом увеличивается. Возрастает количество эритроцитов в крови за счет их усиленного образования и выбрасывания в кровеносное русло из кровяных депо. Это Является одним из основных защитных приспособлений организма, которое и способствует увеличению количества гемоглобина, а следовательно, и усилению связывания и переноса кислорода. Кроме того, увеличивается минутный объем сердца и повышается стойкость тканей к некоторому недостатку кислорода.
Увеличение устойчивости организма к понижению атмосферного давления, т. е. приспособление хода физиологических процессов к изменившимся внешним условиям, осуществляется нервной системой и ее высшим отделом — корой головного мозга.
После тренировки человек может находиться на высоте 4000—5000 м, не испытывая неприятных проявлений горной болезни. Так, после тренировки экспедиция на Эльбрусе достигла высоты более 5000 м, а на Памире — 7000 м. Экспедиция, поднявшаяся на Эверест, достигла высоты 8400. Подъемы на высоты более 5000 м, как правило, возможны при условии пользования кислородными приборами.
Дыхание при повышенном атмосферном давлении
Работа, которая выполняется в кессонах при постройке тоннелей и мостов и водолазами под водой, протекает под большим давлением. Давление возрастает по мере опускания водолаза в глубинные водные слои. Спуск на глубину 10,3 м увеличивает давление на 1 атмосферу. Водолаз, находясь на глубине 20,6 м, будет испытывать давление слоя воды, равное 2 атмосферам плюс атмосферное давление, т. е. всего 3 атмосферы. Некоторые водолазы спускаются на глубину, где давление достигает 10 атмосфер. Водолазы и лица, работающие в кессонах, подвержены водолазной, или кессонной, болезни.
Кессонная болезнь связана с тем, что в крови человека, находящегося на поверхности земли, в растворенном состоянии находится около 1 л азота. При опускании в глубину человек испытывает большее давление, и количество растворенного в крови азота возрастает.
Быстрый подъем человека из глубины сопровождается понижением давления, а следовательно, и изменением парциального давления азота в альвеолярном воздухе. Азот начинает энергично выделяться, и в крови появляются его пузырьки.
Появление таких пузырьков весьма опасно, так как они могут вызвать закупорку сосудов. Особенно тяжелые последствия наблюдаются при закупорке сосудов мозга, что сопровождается параличом и иногда кончается смертью. При легких формах кессонной болезни больной испытывает кожный зуд, боль в суставах и мышцах, головокружение; бывает рвота, иногда наступает обморочное состояние.
Основной мерой предотвращения кессонной болезни является медленный подъем на поверхность с остановками на разных глубинах. Такой продолжительный подъем с остановками значительно снижает возможность наступления кессонной болезни. Чтобы ускорить выделение азота из крови, применяется вошедшее в последние годы в практику дыхание смесью кислорода и гелия.
Искусственное дыхание
Искусственное дыхание применяется в тех случаях, когда у человека прекращается дыхание, а сердце продолжает работать. Так бывает у утопленников, у людей, пораженных электрическим током, отравленных газами, и т. д. В этих случаях при помощи искусственного дыхания можно возобновить деятельность дыхательного центра и спасти человека от смерти. В практике были случаи, когда нормальное дыхание восстанавливалось через 4—6 часов искусственного дыхания.
Наиболее распространенными являются два способа искусственного дыхания.
Первый способ: дыхание изо рта в рот. На рот пострадавшего набрасывают кусочек марли или тоненький платочек и оказывающий помощь, прижавшись губами к губам пострадавшего, делает сильный выдох ему в рот. Выдохнутый воздух поступает в легкие и раздувает их. В выдохнутом воздухе содержится около 17% кислорода, что достаточно для насыщения гемоглобина кислородом, а высокий процент углекислого газа (3) препятствует выходу из крови углекислоты, в результате ее концентрация в крови спасаемого повышается и возбуждает дыхательный центр.
Второй способ: расширение и сдавливание грудной клетки.
Широко применяются два приема.
Первый прием (рис.): больного кладут на спину с несколько запрокинутой назад головой. Руки его берут ниже локтя и в течение 2 секунд прижимают к грудной клетке, уменьшая тем самым ее объем и изгоняя из нее воздух; так производится выдох, за выдохом следует вдох; его достигают путем отведения рук кверху круговым движением. Продолжительность искусственного вдоха 3 секунды.
Второй прием (рис.2): больного кладут вниз лицом, повернув голову в сторону. Человек, производящий искусственное дыхание, становится на колени так, чтобы туловище больного находилось между ними. Выдох достигается путем сильного надавливания ладонями и всей тяжестью тела на нижнюю часть грудной клетки. Вдох производится пассивно, так как по прекращении надавливания грудная клетка расширяется, возвращаясь к исходному положению.
Статья на тему Дыхание в разных условиях
Источник