Дыхание в условиях пониженного атмосферного давления

Дыхание в условиях пониженного атмосферного давления thumbnail

Дыхание при пониженном атмосферном давлении. При подъеме на высоту животные и человек оказываются в условиях пониженного атмосферного давления. При этом развивается гипоксия (недостаток кислорода в организме) в результате низкого парциального давления кислорода во вдыхаемом воздухе. На высоте 5 км барометрическое давление составляет около 60 мм рт. ст. и насыщенность крови кислородом снижается до 80% , что способствует развитию горной болезни.

На высоте от 2,5 до 5 км повышается вентиляция легких, что вызвано стимуляцией каротидных хеморецепторов. Одновременно происходит повышение артериального давления и увеличение частоты сердечных сокращений. Эти реакции направлены на усиление снабжения тканей кислородом.

В случае увеличения высоты более 7 км могут наступить опасные для жизни нарушения дыхания, кровообращения и потеря сознания.

Длительное пребывание или обитание животных и людей в горной местности сопровождается акклиматизацией к кислородному голоданию, которая проявляется в следующем:

  • • увеличивается концентрация эритроцитов в крови в результате усиления эритропоэза;
  • • повышается содержание гемоглобина в крови и увеличивается ее кислородная емкость;
  • • активизируется вентиляция легких;
  • • повышается плотность кровеносных капилляров в тканях в результате увеличения их длины и извитости.

Дыхание при повышенном атмосферном давлении. При погружении животных и человека под воду возрастает атмосферное давление. Например, на глубине 10 м давление возрастает до 2 атм, на глубине 20 м — до 3 атм. В этом случае парциальное давление газов в альвеолярном воздухе возрастает и в крови растворяется большое количество газов — кислорода, азота. Само пребывание на большой глубине не опасно, но при быстром подъеме и переходе от повышенного давления к обычному растворенные в крови газы вскипают и вызывают газовую эмболию сосудов (кессонная болезнь), что может привести к смерти. Кессонная болезнь характеризуется болями в мышцах, головокружением, одышкой, потерей сознания. При медленном подъеме на поверхность газы постепенно удаляются из организма, что профилактирует развитие кессонной болезни. Особенно важны эти закономерности при проведении водолазных работ. В случае погружения водолазов на большие глубины для дыхания применяют гелиево-кислородные смеси. Водолазы поднимаются с глубины очень медленно, а после подъема проходят постепенную декомпрессию.

У некоторых животные выработались специальные дыхательные приспособительные реакции, позволяющие им нырять на определенную глубину. К таким животным относятся ластоногие, киты, выдра, калан и многие другие. Например, крупные киты могут погружаться на глубину 100-200 м и находиться под водой в течение 50—60 мин, а морские львы могут нырять на глубину до 750 м. Физиологически это обусловлено тем, что их дыхательный центр малочувствителен к накоплению в организме С02, что позволяет длительно задерживать дыхание и более полно использовать 02, содержащийся в крови и легких. Кроме того, их мышцы богаты миоглобином. Миоглобин — красный железосодержащий белок (специализированная разновидность гемоглобина), находящийся в сердечной и скелетной мышцах и активно переносящий 02. Так, в скелетных мышцах лошадей и человека содержится 4—9 мг миог- лобина на 1 г массы мышц, а у морских львов — 55—75 мг/г.

Источник

Дыхание при пониженном атмосферном давлении.

Дыхание в условиях пониженного атмосферного давления

Человек оказывается в условиях сниженного атмосферного давления при подъёме на высоту (альпинисты, пилоты при разгерметизации кабины, парашютисты).

Основным следствием понижения атмосферного давления является гипоксия (кислородное голодание), развивающаяся вследствие низкого давления кислорода во вдыхаемом воздухе.

Подъем на высоту до 1,5-2км над уровнем моря не сопровождается значительным снижением снабжения организма кислородом и изменениями дыхания. На высоте 2.5-5км наступает увеличение вентиляции легких, одновременно повышается артериальное давление и увеличивается частота сердечных сокращений. Эти реакции направлены на усиление снабжения тканей кислородом, они частично компенсируют сниженное давление кислорода

Увеличение вентиляции легких на высоте может оказывать и отрицательное действие на дыхание, так как оно ведёт к снижению давления двуокиси углерода в альвеолярном воздухе и удалении его из крови.

При дальнейшем снижении атмосферного давления на высоте 4-5км, развивается высотная (горная) болезнь: слабость, цианоз, снижение частоты сердечных сокращений, артериального давления, головные боли, глубина дыхания уменьшается. На высоте свыше 7 км могут наступить потеря сознания и опасные для жизни нарушения дыхания и кровообращения.

Особенно высокую опасность представляет собой быстрое развитие гипоксии. При этом у человека отсутствует неприятные ощущения, связанные с гипоксии, нет чувства тревоги и опасности. Потеря сознания может наступит внезапно.

Дыхание чистым кислородом через загубник или маску позволяет человеку сохранить нормальную работоспособность на высоте 11-12 км. При подъемах на большие высоты даже при дыхании чистым кислородом его давление в альвеолярном воздухе оказывается значительно ниже чем в норме. Поэтому полеты в стратосферу возможны только в герметизированных кабинах или скафандрах, в которых поддерживается достаточно высокое атмосферное давление.

Дыхание при повышенном атмосферном давлении

Дыхание в условиях пониженного атмосферного давления

Под повышенным давлением воздуха человеку приходится находиться во время водолазных и кессонных работ. При погружении под воду через каждые 10 м давление воды на поверхность тела увеличивается на 1 атм. Это значит, что на глубине 90м на человека действует давление около 10 атм.

Читайте также:  Препараты при пониженном давлении или народные средства

При погружении под воду в водолазных костюмах без изоляции от действий гидростатического давления человек может дышать только воздухом под соответствующим погружению повышенным давлением. В этих условиях увеличивается количество газов, растворенных в крови, в том числе кислорода и азота. При высоких давлениях заметно возрастает плотность вдыхаемого воздуха, что увеличивает сопротивление воздухоносных путей. Возрастание давления кислорода может привести к «кислородному отравлению», сопровождающемуся судорогами. Поэтому пребывание человека на глубинах может продолжаться лишь ограниченное время.

При погружении на большие глубины для дыхания применяются гелиево-кислородные смеси. Гелий почти нерастворим в крови, обладает меньшей плотностью, чем азот, при дыхании им снижается сопротивление дыханию. Кислород добавляют к гелию в такой концентрации, чтобы его парциальное давление на глубине, т. е. при повышенном давление, было близким к тому, которое имеется в обычных условиях.

После подобных работ специальное внимание требует переход человека от высокого давления к нормальному. Если человека быстро поднять на поверхность, то возникает явление мгновенного «закипания» крови вследствие бурно выделяющихся ранее растворённых в крови газов. Пузырьки газа, закупоривая сосуды (эмболия), либо приводят к тяжёлым последствиям вследствие нарушения кровообращения в жизненно важных органах и тканях, либо к быстрой гибели организма. Состояние, возникающее при быстрой декомпрессии, называют кессонной болезнью. Это заболевание проявляется болями в мышцах, головокружением, рвотой, одышкой, потерей сознания, в тяжелых случаях возникают параличи. Для лечения кессонной болезни необходимо немедленно вновь подвергнуть пострадавшего действию высокого давления, чтобы вызвать растворение пузырьков азота, а затем снижать давление постепенно. Также разработаны и существуют особые правила подъёма водолазов на поверхность с плавным, постепенным набором высоты и периодически декомпрессионными остановками на определённых глубинах для того, чтобы газы постепенно выделялись из организма, не вызывая эмболии.

Дыхание в условиях пониженного атмосферного давления

Используемые источники: https://images. *****/

Источник

Оглавление темы “Дыхательный центр. Дыхательный ритм. Рефлекторная регуляция дыхания.”:

1. Дыхательный центр. Что такое дыхательный центр? Где находится дыхательный центр? Комплекс Бетзингера.

2. Дыхательный ритм. Происхождение дыхательного ритма. Пребетзингерова область.

3. Пневмотаксический центр. Влияние моста на дыхательный ритм. Апнейстический центр. Апнейзис. Функция спинальных дыхательных мотонейронов.

4. Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические ( артериальные ) хеморецепторы.

5. Механорецепторы. Механорецепторный контроль дыхания. Рецепторы легких. Рецепторы реулирующие дыхание.

6. Дыхание при физической нагрузке. Нейрогенные стимулы дыхания. Влияние на дыхание физической нагрузки низкой и средней интенсивности.

7. Влияние на дыхание физической нагрузки высокой интенсивности. Энергетическая стоимость дыхания.

8. Дыхание человека при измененном барометрическом давлении воздуха. Дыхание при пониженном давлении воздуха.

9. Горная болезнь. Причины ( этиология ) горной болезни. Механизм развития ( патогенез ) горной болезни.

10. Дыхание человека при повышенном давлении воздуха. Дыхание при высоком атмосферном давлении. Кесонная болезнь. Газовая эмболия.

Дыхание человека при измененном барометрическом давлении воздуха. Дыхание при пониженном давлении воздуха.

Снижение парциального давления кислорода в окружающем воздухе, что в естественных условиях имеет место при восхождении человека на высокие горы, вызывает недостаток 02 в крови, что называется артериальной гипок-семией. Так, на высоте 3000 м над уровнем моря барометрическое давление воздуха уменьшается на 1/3, а на высоте 8500 м — на 2/3. При подъеме человека на высоту до 3—3,5 км над уровнем моря артериальная кровь насыщена кислородом в пределах нормы — на 90—95 % (табл. 10.3).

Таблица 10.3. Парциальное давление кислорода во вдыхаемом и альвеолярном воздухе и процент насыщения артериальной крови кислородом на различной высоте над уровнем моря

Дыхание человека при измененном барометрическом давлении воздуха. Дыхание при пониженном давлении воздуха.

Поскольку насыщение артериальной крови кислородом при подъеме на высоту до 3000 м над уровнем моря составляет не менее 90 %, то в этих условиях незначительное снижение напряжения 02 в артериальной крови человека происходит за счет уменьшения содержания в крови физически растворенного кислорода. Это, тем не менее, обусловливает появление слабо выраженной гипоксемии и сопровождается незначительным увеличением вентиляции легких. Восхождение человека на высокую гору всегда сопряжено с усиленной мышечной деятельностью, повышением температуры тела, увеличением в плазме крови содержания катехоламинов.

Эти факторы оказывают комплексное стимулирующее влияние на дыхание человека при восхождении на горную высоту. В результате слабо выраженная артериальная гипоксемия при участии периферических хеморецепторов увеличивает степень гиперпноэ у человека, обусловленное работой мышц. Повышенное содержание катехоламинов в плазме крови повышает чувствительность периферических хеморецепторов к гипоксемии и, усиливая активность периферических хеморецепторов, ведет к росту параметров внешнего дыхания. Наконец, повышение температуры тела человека при восхождении на высокие горы в результате мышечной деятельности также повышает чувствительность периферических хеморецепторов к гипоксемии. Повышение температуры тела при физической работе может стимулировать дыхание через усиление скорости метаболизма в организме, через периферические хеморецепторы и нейроны дыхательного центра. При этом периферические хеморецепторы являются основными источниками стимуляции вентиляции легких у человека при гипоксии. Поэтому при восхождении человека на высокую гору до высоты 3—3,5 км над уровнем моря усиление вентиляции обусловлено активацией механизмов гуморальной и нервной регуляции дыхания в пределах физиологической нормы.

– Также рекомендуем “Горная болезнь. Причины ( этиология ) горной болезни. Механизм развития ( патогенез ) горной болезни.”

Источник

Низкое атмосферное
давление наблюдается в условиях
высокогорья. Чем больше расстояние от
уровня моря, тем меньше парциальное
давление О2,
из-за снижения атмосферного давления.
Повышенное атмосферное давление
создается при глубоководной работе,
работе в кессонах.

Раньше считали,
что ведущим фактором в изменении дыхания
является атмосферное давление. Однако,
основным фактором, вызывающим изменения
дыхания, является не падение атмосферного
давления, а снижение парциального
давления газов.

При попадании в
низкое давление организм быстро реагирует
на эти изменения:
1) изменяются
все звенья дыхательного процесса:
усиливается вентиляция легких, повышается
количество эритроцитов и Нb, усиливается
работа сердца, увеличивается объемная
скорость кровотока. При длительном
нахождении в низком давлении, механизмы
приспособления отличаются: повышается
эритропоэз, увеличивается содержание
Нb, но работа сердца и гипервентиляция
снижаются, так как они требуют много
кислорода. При повышенном атмосферном
давлении растворимость газов увеличивается:
кислорода, СО2,
азота. Чем больше давление, тем больше
растворимость. Но в условиях декомпрессии
(при быстром выходе из высокого давления)
происходит выделение газообразного
азота, который в виде газа циркулирует
по крови. Это приводит к газовой эмболии.
Кислород и СО2
вступают в соединения, а азот не участвует
в газообмене. Поэтому декомпрессия
должна быть постепенной, в небольшом
объеме крови.

Регуляция дыхания

Дыхательный центр
— комплекс
функционально взаимосвязанных нервных
образований, расположенных на разных
уровнях ЦНС. Каждый центр рассматривается
не как точечное, локальное образование,
а как группа нейрональных элементов.
Выделяют основной
— ведущий
и вспомогательные центры. Основной
дыхательный центр
— это
бульбарный отдел, т.е. центр, расположенный
в продолговатом мозгу. Без него нет
дыхания. Заслуга открытия дыхательного
центра принадлежит казанскому физиологу
Н.А.Миславскому.
Он делал серийные
перерезки ствола мозга. При отделении
продолговатого мозга от среднего
животное сохраняло способность дышать.
При перерезке на границе между
продолговатым и спинным мозгом
дыхание прекращалось.
От бульбарного отдела импульсы поступают
в спинной мозг
к ядрам
диафрагмального нерва, которые расположены
на уровне 3-4-го
шейных сегментов; к мотонейронам нервов,
иннервирующих дыхательную мускулатуру.
Спинномозговые центры самостоятельно
не возбуждаются и не генерируют
возбуждение. Они возбуждаются в результате
поступления импульсов из продолговатого
мозга. Поэтому прерывание связи между
продолговатым мозгом и спинномозговыми
дыхательными центрами вызывает остановку
дыхания. Кроме спинномозговых имеются
надбульбарные структуры:
1) мост
— там
расположен пневмотаксический центр,
участвующий в обеспечении ритмики
дыхания, смене вдоха и выдоха. Сейчас
ему отводят меньшее значение, так как
доказано, что он не играет существенной
роли;
2) корковые
влияния
— по воле
человека можно менять частоту и глубину
дыхания.

Основным отделом
дыхательного центра является бульбарный.
Он состоит из двух групп нейронов:
1) скопление
нейронов, образующих центр вдоха,
инспираторные нейроны,
2) нейроны,
обеспечивающие выдох (экспираторные
нейроны). Оба центра парные. Между этими
центрами взаимоотношения носят
реципрокный (взаимосочетанный) характер.
Это проявляется в том, что при возбуждении
одного центра (например, вдоха), другой
центр затормаживается (например, центр
выдоха), и наоборот. Это происходит
ритмически. Нейроны бульбарного
дыхательного центра подразделяются на
несколько типов: ранние инспираторные
(возбуждаются вначале вдоха), поздние
инспираторные (возбуждаются в конце
вдоха, полные инспираторные (возбуждаются
на протяжении всего вдоха), постинспираторные
(возбуждаются вначале выдоха), экспираторные
(возбуждаются во второй части выдоха)
и преинспираторные (перед началом
вдоха). Локализация дыхательного центра,
а также разные типы нейронов были
установлены в результате микроэлектродных
исследований с отведением потенциалов
от отдельных групп нейронов. Генерация
дыхательного ритма происходит в
вышеперечисленных нейронных ансамблях.
Все эти образования являются парными
и между ними имеется согласованная
(координированная) деятельность.
Раздражителем для этих центров являются:

1)
изменение концентрации
СО2
в самом дыхательном центре;

2)
изменение рН в кислую сторону в межтканевой
жидкости, омывающей дыхательный центр.
Для возбуждения дыхательного центра
требуется минимальный сдвиг рН. Изменение
концентрации
СО2
и рН действуют на вспомогательные,
дополнительные нейроны.
Эти нейроны изменяют состояние самого
центра. Это предохраняет сам основной
дыхательный центр от неожиданного,
побочного воздействия. Поэтому при
наркозе лекарство действует на
вспомогательные нейроны, а сами нейроны
центра не затрагиваются. Из бульбарного
дыхательного центра импульсы идут по
спинному мозгу и возбуждают центры
диафрагмального нерва и межреберных
мышц, обеспечивая вдох. При повреждении
спинного мозга (перерыве его) на уровне
шейно-грудного отдела, дыхание будет,
но только за счет диафрагмы, т.к. импульсы
от бульбарного центра доходят до центра
диафрагмального нерва, но они не могут
распространиться ниже по спинному мозгу
из-за перерыва его.

В регуляции дыхания
участвуют блуждающие нервы. Это
проявляется в рефлексе Геринга-Брейера,
рецепторы находятся в легких
(механорецепторы). Их раздражение
происходит в результате растяжения
легких при вдохе. Импульсы идут по
блуждающему нерву к дыхательному центру.
Это приводит к торможению центра вдоха
и возбуждению центра выдоха. Таким
образом, в результате этого рефлекса
происходит смена вдоха на выдох. При
двусторонней перерезке блуждающего
нерва, дыхание будет глубокое и редкое.

Это происходит
потому, что по блуждающему нерву импульсы
не идут, и своевременная смена вдоха на
выдох не происходит. Раньше думали, что
подключается пневмотоксический центр
моста, но при разрушении моста ритмика
дыхания почти не изменялась, так как
кроме дыхательного центра моста и
блуждающего нерва, есть рецепторы,
принимающие участие в регуляции дыхания
с дыхательных мышц (с диафрагмы, наружных
межреберных мышц). Сокращение этих мышц
возбуждает проприорецепторы, импульсы
от них идут по центростремительным
нервам в продолговатый мозг, и затормаживают
дыхательный центр вдоха, и возбуждается
центр выдоха. Кроме этих рефлексов,
имеет значение прохождение воздуха
через воздухоносные пути. В самом начале
вдоха проходящая первая порция воздуха
усиливает рефлекторно акт вдоха,
последующее поступление воздуха и
раздражение этих рецепторов, приводит
к угнетению центра вдоха, и вдох заменяется
на выдох. Прохождение воздуха через
воздухоносные пути раздражает рецепторы.
Прохождение воздуха с разной температурой
влияет на акт вдоха и выдоха рефлекторным
путем: при низкой температуре наблюдается
задержка дыхания. Химические вещества
тоже влияют на дыхание через рецепторы
верхних дыхательных путей. Это защищает
альвеолы от повреждения.

Нейрогуморальный
механизм

основным раздражителем для хеморецепторов
основных сосудистых рефлесогенных зон
является содержание СО2
и О2
в крови. Эти рецепторы расположены в
главных сосудистых рефлексогенных
зонах: дуга аорты, каротидный синус.
Действующим фактором являются гуморальные
агенты (рН, СО2,О2),
но реализация обеспечивается рефлекторным
путем. Недостаток кислорода в крови
является основным раздражителем для
сосудистых хеморецепторов. Повышение
парциального давления углекислого газа
и снижение рН в артериальной крови
потенцируют возбуждение сосудистых
хеморецепторов и не являются при
нормальном дыхании адекватными
раздражителями для этих рецепторов.
Лишь в патологии при гиперкапнии и
ацидозе происходит раздражение этих
хеморецеторов и изменение дыхания.

Моисеев
производил изоляцию каротидного синуса
(перевязка внутренней, наружной и общей
сонных артерий), но сохранял иннервацию
этого участка (нерв Геринга). В этот
синус вводился слабый раствор угольной
кислоты. Это сопровождалось гипервентиляцией.
При перерезке нерва Геринга, введение
угольной кислоты больше не приводило
к изменению вентиляции легких. Заслуга
Моисеева заключается в том, что он
показал роль сосудистых хеморецепторов
в регуляции дахания. Конечно, концентрация
угольной кислоты в опыте Моисеева была
намного выше нормальной концентраци,
но вывод, сделанный им что фактором,
вызывающим раздражение, хеморецепторов,
является гуморальный, а природа изменения
— рефлекторная: хеморецептор → каротидный
синус → нерв Геринга → бульбарный
дыхательный центр → нисходящие пути к
спинному мозгу, нервы (диафрагмальный
и межреберные) → мышцы → сокращение →вдох. В
нормальных условиях этот механизм слабо
срабатывает. Он подключается в
экстремальных случаях (гипоксия,
физическая нагрузка).

Основным
регулятором в нормальных условиях
является изменение рН в межклеточном
пространстве мозга между нейронами. По
существу, дыхательный центр работает
по принципу автоматизма. Если микроэлектроды
ввести в нейроны инспираторного центра,
а другие — в экспираторный центр, то
можно наблюдать динамику взаимоотношения
изменения дыхания с рН. Центральные
хеморецепторы активируются при
гиперкапнии и ацидозе и тормозятся при
гипокапнии и алкалозе.

Наблюдается и
условно-рефлекторная регуляция дыхания.
Афферентный (центростремительнй) путь
условного рефлекса зависит от исходного
сигнала. Условным
раздражителем для натуральных условных
рефлексов является обстановка, в которой
находится человек или животное, а
импульсы поступают через зрительный,
слуховой и др. анализаторы. Пример
натурального условного рефлекса:
спортсмен на старте, рабочий перед
началом работы, студент перед экзаменом
(взятием билета) и др. При этом рефлекторный
путь представлен следующим образом:
рецепторы конкретного органа чувств
посылают импульсы в мозг, которые доходят
до коры больших полушарий
и затем через подкорковые структуры
мозга доходят до
бульбарного отдела дыхательного центра,
а оттуда возбуждение по спинному мозгу
распространяется к спинномозговым
центрам дыхательных мышц. Искусственные
условные рефлексы (на свет, пищу и др.)
вырабатываются в лабораторных условиях.
Основное назначение всех этих регуляторных
механизмов –
сохранение постоянного газового состава
крови.

Кроме перечисленных
механизмов регуляции существует
ауторегуляция газового состава органа.
Это проявляется в неподчинении общим
принципам рефлекторной регуляции. Хоть
и гипервентиляции нет, но. орган будет
потреблять кислорода больше за счёт
усиленной диффузии, притока крови и др.
К этому приводит увеличение продуктов
метаболизма в органе
(CO2,
рН). При сдвиге только рН (без СО2),
приспособительная реакция слабее. В
саморегуляции дыхания имеет значение
и недостаток кислорода.(при низком
парциальном давлении).

ЗАЩИТНЫЕ
ДЫХАТЕЛЬНЫЕ РЕФЛЕКСЫ:

1) кашель,
чихание
направлены
на удаление раздражающего тела или
вещества. Эти проявления могут быть при
патологических состояниях мучительными:
сильный, надсадный кашель и др.

Дыхание имеет
значение и для артикуляции (речи). Дыхание
и глотание-взаимосвязаны. Между центрами
дыхания и глотания имеются реципрокные
взаимоотношения. Блуждающие и симпатические
нервы имеют значение не только в
рефлекторной регуляции дыхания, но и
оказывают мощное влияние на тонус
бронхиальной мускулатуры. Парасимпатические
нервы усиливают тонус, симпатические
нервы и их медиаторы на бронхиальную
мускулатуру оказывают расслабляющее
влияние.

Соседние файлы в папке тексты лекций по физе

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Читайте также:  Определение фракционного состава нефтепродуктов при пониженном давлении