Определение артериального давления по пульсовой волне

Определение артериального давления по пульсовой волне thumbnail

Тахоосциллографический метод. Измерение АД методом анализа скорости пульсовой волны

Тахоосциллографический метод определения артериального давления был предложен Н.Н.Савицким в 1935 году. Он позволяет измерить систолическое, диастолическое, среднее, боковое артериальное давление, частоту пульса, пульсовое давление, давление гемодинамического удара. Для этого на плечо накладывают манжету Рива-Роччи, а на лучевую артерию — пульсовой датчик. Тахоосциллограмму снимают на фазе компрессии. Она может быть проанализирована врачом или в автоматизированном режиме микропроцессором.

При анализе тахоосциллограммы учитывают не изменения высоты осцилляции, а деформацию нижнего отрезка осциллограммы, которая проявляется достаточно четко и однозначно. Четкость и однозначность критериев для определения диастолического, среднего, бокового и систолического давления делают тахоосциллографический метод весьма ценным и перспективным.

Для измерения артериального давления может использоваться в качестве исходного параметра скорость распространения пульсовой волны, являющейся функцией артериального давления. Скорость пульсовой волны однозначно связана с величиной артериального давления.

Однако следует иметь в виду, что скорость пульсовой волны зависит еще и от многих других факторов: таких как эластичность стенок сосудов, вязкость крови. Но поскольку эти факторы не могут изменяться на протяжении короткого времени, то их влияние на динамику пульсовой волны в режиме реального времени не должно существенно изменять точность измерения. Поэтому если применять данный метод в комбинации с другими методиками, то можно в полной мере использовать его достоинства.

Скорость пульсовой волны на практике измеряется путем сопоставления данных ЭКГ и фотоплетизмографии, т.е. без использования дополнительных датчиков.

Изменение формы пульсовой волны в периферических сосудах.

По мере удаления от аорты амплитуда и скорость нарастания пульсовой волны в периферическом сосуде возрастают, тогда как дикротическая выемка становится глубже.

Кроме того, артериальный пульс лучше оценивать на сонных, а не более дистальных артериях, поскольку в периферических сосудах систолическое давление выше.

Главным и практически ценным достоинством метода измерения АД, основанного на регистрации скорости распространения пульсовой волны, является возможность измерения показателей давления по каждому удару пульса.

Очевидно, что этот метод является оценочным, но может быть эффективно и полезно использован для измерения АД в интервалах между измерениями осциллометрическим методом.

Для артериального давления может быть также использован метод, основанный на анализе формы пульсовой волны. В качестве математического инструмента может быть реализован подход на основе Винд-кессель модели.

Кривая артериального давления может быть получена многими способами. Один из самых простых способов — это фотоплетизмография. Датчик, установленный на проекции артерии дает сигнал, пропорциональный ее кровенаполнению. Очевидно, что при неизменных прочих условиях, кровенаполнение артерии пропорционально артериальному давлению. Параметрами формы волны могут быть, например, величины сигнала, соответствующие диастолическому, среднему и систолическому давлениям. Получив эти величины и зная истинные значения давления, полученные другими методами (например, методом Короткова), можно откалибровать параметры математической Виндкессель модели. Метод также позволяет получить показатели артериального давления по каждому удару пульса.

Кривая пульсовой волны может быть также получена путем частичного сдавливания поверхностно залегающих артерий конечности. Регистрация кривой осуществляется с помощью тензодатчиков бокового давления, передаваемого на них через стенку сосуда. Этот метод предложен G.L. Pressman и P.M. Newgard в 1963 г. Достоинства его состоят в возможности непрерывной записи АД, а также в низком уровне тактильных воздействий манжеты.

– Также рекомендуем “Компенсационный метод измерения АД. Технология осциллометрического метода измерения АД”

Оглавление темы “Измерение АД, ЦВД, мозгового кровотока”:

1. Методы измерения артериального давления. Технология измерения АД

2. Осциллометрический метод измерения давления. Методика осциллометрии

3. Тахоосциллографический метод. Измерение АД методом анализа скорости пульсовой волны

4. Компенсационный метод измерения АД. Технология осциллометрического метода измерения АД

5. Центральное венозное давление – ЦВД. История измерения ЦВД

6. Методы измерения центрального венозного давления. Инвазивное измерение ЦВД

7. Систолическое давление в легочной артерии (СДЛА). Номограмма ЦВД

8. Регистрация давления легочной артерии. Церебральная гемодинамика

9. Методы регистрации мозгового кровотока. Церебральная оптическая оксиметрия

10. Преимущества церебральной оптической оксиметрии. Недостатки церебральной оптической оксиметрии

Источник

Пульсовая волна. Аускультативный метод измерения давления

Когда сердце во время систолы перекачивает кровь в аорту, в первый момент растягивается только начальная часть аорты, т.к. инерция крови, находящейся в аорте, предупреждает немедленный отток крови на периферию. Однако возросшее давление в начальной части аорты преодолевает инерцию, и фронт волны, растягивающей стенку сосуда, распространяется дальше вдоль аорты. Это явление называют распространением пульсовой волны в артериях.

Скорость распространения пульсовой волны в аорте в норме составляет от 3 до 5 м/сек, в крупных артериальных ветвях — от 7 до 10 м/сек, а в мелких артериях — от 15 до 35 м/сек. В целом, чем больше емкость того или иного участка сосудистой системы, тем меньше скорость распространения пульсовой волны, поэтому скорость распространения пульсовой волны в аорте гораздо ниже, чем в дистальных отделах артериальной системы, где мелкие артерии отличаются меньшей податливостью сосудистой стенки и меньшей резервной емкостью. В аорте скорость распространения пульсовой волны в 15 раз меньше, чем скорость кровотока, т.к. распространение пульсовой волны представляет собой особый процесс, лишь незначительно влияющий на продвижение всей массы крови вдоль сосуда.

Сглаживание пульсовых колебаний давления в мелких артериях, артериолах и капиллярах. На рисунке показаны типичные изменения рисунка пульсового колебания по мере того, как пульсовая волна проходит по периферическим сосудам. Особое внимание следует обратить на три нижние кривые, где интенсивность пульсаций становится все меньше в мелких артериях, артериолах и, наконец, в капиллярах. В действительности, пульсовые колебания стенки капилляров наблюдаются, если резко увеличены пульсации в аорте или предельно расслаблены артериолы.

Снижение амплитуды пульсаций в периферических сосудах называют сглаживанием (или демпфированием) пульсовых колебаний. К этому приводят две основные причины: (1) сосудистое сопротивление кровотоку; (2) податливость сосудистой стенки. Сосудистое сопротивление способствует сглаживанию пульсовых колебаний стенки сосудов, потому что все меньший объем крови продвигается вслед за фронтом пульсовой волны. Чем больше сосудистое сопротивление, тем больше препятствий для объемного кровотока (и меньше его величина). Податливость сосудистой стенки также способствует сглаживанию пульсовых колебаний: чем больше резервная емкость сосуда, тем больший объем крови необходим, чтобы вызвать пульсацию во время прохождения фронта пульсовой волны. Таким образом, можно сказать, что степень сглаживания пульсовых колебаний прямо пропорциональна произведению сопротивления сосуда на его резервную емкость (или податливость сосудистой стенки).

пульсовая волна

Аускультативный метод измерения давления

Совсем не обязательно вводить иглу в артерию пациента для измерения артериального давления при обычном клиническом обследовании, хотя в ряде случаев применяют прямые методы измерения давления. Вместо этого используют непрямые методы, чаще всего аускультативный метод определения величины систолического и диастолического давления.

Аускультативный метод. На рисунке представлен аускультативный метод определения величины систолического и диастолического давления. Стетоскоп располагается в области локтевого сгиба над лучевой артерией. На плечо накладывается резиновая манжетка для нагнетания воздуха. Все время, пока давление в манжетке остается ниже, чем в плечевой артерии, стетоскоп не улавливает никаких звуков. Однако когда давление в манжетке увеличивается до уровня, достаточного для перекрытия кровотока в плечевой артерии, но только во время диастолического снижения давления в ней, можно услышать звуки, сопровождающие каждую пульсацию. Эти звуки известны как тоны Короткова.

Истинную причину тонов Короткова все еще обсуждают, однако главной причиной их появления, бесспорно, является то, что отдельным порциям крови приходится прорываться через частично перекрытый сосуд. При этом в сосуде, расположенном ниже места наложения манжетки, ток крови становится турбулентным и вызывает вибрацию, что является причиной появления звуков, слышимых при помощи стетоскопа.

Для измерения артериального давления аускультативным методом давление в манжетке сначала поднимают выше уровня систолического давления. Плечевая артерия при этом пережата таким образом, что кровоток в ней полностью отсутствует и тоны Короткова не слышны. Затем давление в манжетке постепенно понижают. Как только давление в манжетке становится ниже систолического уровня, кровь начинает прорываться через сдавленный участок артерии во время систолического подъема давления. В это время в стетоскопе слышны звуки, похожие на стук, возникающие синхронно с сердцебиениями. Давление в манжетке во время появления первого звука принято считать равным систолическому давлению в артерии.

По мере того, как давление в манжетке продолжает снижаться, характер тонов Короткова меняется: они становятся более грубыми и громкими. Наконец, когда давление в манжетке падает до уровня диастолического, артерия под манжеткой во время диастолы остается непережатой. Условия, необходимые для формирования звуков (прорыв отдельных порций крови через суженную артерию), исчезают. В связи с этим звуки внезапно становятся приглушенными, и после снижения давления в манжетке еще на 5-10 мм рт. ст. полностью прекращаются. Давление в манжетке во время изменения характера звука принято считать равным диастоличе-скому давлению в артерии. Аускультативный метод измерения систолического и диастолического давления не является абсолютно точным. Ошибка может составить 10% по сравнению с прямым измерением давления в артерии с помощью катетера.

Нормальный уровень артериального давления, измеренный аускультативным методом. На рисунке показаны нормальные уровни систолического и диастолического артериального давления в зависимости от возраста. Постепенное увеличение давления с возрастом объясняют возрастными изменениями регуляторных механизмов, контролирующих кровяное давление. В первую очередь почки ответственны за долговременную регуляцию артериального давления. Как известно, функция почек заметно меняется с возрастом, особенно у людей старше 50 лет.

Заметное повышение систолического давления происходит у людей старше 60 лет. Дело в том, что артерии к этому времени становятся жесткими в результате развития атеросклероза. Кроме того, повышение систолического давления при атеросклерозе сочетается с увеличением пульсового давления, как объяснялось ранее.

– Также рекомендуем “Среднее артериальное давление. Вены и венозное давление”

Оглавление темы “Давление крови. Венозный кровоток”:

1. Гематокрит. Зависимость кровотока от давления

2. Растяжимость сосудов. Емкость сосудов

3. Кривые объем-давление артериальных и венозных сосудов. Релаксация сосудистой стенки

4. Пульсовые колебания артериального давления. Изменения пульсового давления

5. Пульсовая волна. Аускультативный метод измерения давления

6. Среднее артериальное давление. Вены и венозное давление

7. Сопротивление венозных сосудов. Влияние гравитации на венозное давление

8. Клапаны вен и венозный насос. Несостоятельность венозных клапанов

9. Методы измерения венозного давления. Емкостная функция вен

10. Депо эритроцитов – селезенка. Обновление крови

Источник

Пульсовая волна — распространяющаяся по артериям волна повышенного давления, вызванная выбросом крови из левого желудочка сердца в период систолы. Распространяясь от аорты до капилляров, пульсовая волна затухает.

Поскольку аорта является главным кровеносным сосудом, то аортальная скорость пульсовой волны представляет наибольший интерес с медицинской точки зрения при обследовании пациентов.

Возникновение и распространение пульсовой волны по стенкам сосудов обусловлено упругостью аортальной стенки. Дело в том, что во время систолы левого желудочка сила, возникающая при растяжении аорты кровью, направлена не строго перпендикулярно к оси сосуда и может быть разложена на нормальную и тангенциальную составляющие. Непрерывность кровотока обеспечивается первой из них, тогда как вторая является источником артериального импульса, под которым понимают упругие колебания артериальной стенки.

Для людей молодого и среднего возраста скорость распространения пульсовой волны в аорте равна 5,5-8,0 м/с. С возрастом уменьшается эластичность стенок артерий и скорость пульсовой волны увеличивается.

Скорость распространения пульсовой волны[1] в аорте является достоверным методом определения жесткости сосудов. В стандартном её определении используется методика, основанная на измерении пульсовых волн датчиками, установленными в области сонной и бедренной артерий. Определение скорости распространения пульсовой волны и других параметров жесткости сосудов позволяет выявить начало развития тяжелых нарушений сердечно-сосудистой системы и правильно подобрать индивидуальную терапию.

СРПВ увеличивается при атеросклерозе аорты, гипертонической болезни, симптоматических гипертониях и при всех патологических состояниях, когда происходит уплотнение сосудистой стенки. Уменьшение СРПВ наблюдается при аортальной недостаточности, при открытом артериальном (боталловом) протоке.

Для регистрации пульсовых колебаний применяют оптические сфигмографы, механически воспринимающие и оптически записывающие колебания сосудистой стенки. К таким приборам относится мсханокардиограф с записью кривой на специальной фотобумаге Фоторегистрация дает неискаженные колебания, однако она трудоемка и требует применения дорогостоящих фотоматериалов. Большое распространение получили электросфигмографы, при которых применяются пьезокристаллы, конденсаторы, фотоэлементы, угольные датчики, тензометры и другие устройства. Для записи колебаний пользуются электрокардиографом с чернильно-перьевой, струйной или тепловой регистрацией колебаний. Сфигмограмма имеет разный рисунок в зависимости от применяемых датчиков, что затрудняет их сравнение и расшифровку. Более информативным является полиграфическая одновременная запись пульсации сонных, лучевых и других артерий, а также ЭКГ, баллистограммы и других функциональных изменений сердечно-сосудистой деятельности.

Для определения тонуса сосудов, эластичности стенок сосудов определяют скорость распространения пульсовой волны. Увеличение жесткости сосудов ведет к увеличению СРПВ. Для этой цели определяют разницу во времени появления пульсовых волн, так называемое запаздывание. Проводят одновременную запись сфигмограмм, располагая два датчика над поверхностными сосудами, расположенными проксимально (над аортой) и дистально по отношению к сердцу (на сонной, бедренной, лучевой, поверхностной височной, лобной, глазничной и других артериях). Определив время запаздывания и длину между двумя исследуемыми точками, определяют СРПВ (V) по формуле:

v=S[2]/T[3],

Основные современные способы методы определения СРПВ, важность оценки жесткости артериальной стенки в клинической практике были отражены в 2016 году в Согласованном мнение российских экспертов по оценке артериальной жесткости в клинической практике. [4]

Примечания[править | править код]

Литература[править | править код]

  • Педли Т. Гидродинамика крупных кровеносных сосудов: Пер. с англ. — М.: Мир, 1983. — 400 с.,
  • Савицкий Н. Н. Некоторые методы исследования и функциональной оценки системы кровообращения. — Л.: Медицина, 1956. — 329 с.,
  • Эман А. А. Биофизические основы измерения артериального давления.- Л.: Медицина, 1983. — 128 с
  • Физиология человека / под редакцией профессора В. М. Смирнова — 1-е издание. — М.: Медицина, 2002. — 608 с. — ISBN 5-225-04175-2
  • Согласованное мнение российских экспертов по оценке артериальной жесткости в клинической практике- 2016 https://cardiovascular.elpub.ru/jour/article/view/342

См. также[править | править код]

Амбулаторное мониторирование пульсовых волн

Источник

Пульсовые колебания артериального давления. Изменения пульсового давления

С каждым ударом сердца новая порция крови поступает в артерии. Если бы не упругая растяжимость артериальной системы, эта кровь протекала бы по периферическим сосудам только во время систолы, а во время диастолы кровоток бы прекращался. Способность артерий вмещать дополнительный объем крови приводит к уменьшению пульсовых колебаний кровотока вплоть до полного их исчезновения к тому времени, как кровь достигнет капиллярного русла. Таким образом, тканевой кровоток осуществляется непрерывно, с ничтожно малыми пульсовыми колебаниями.

На рисунке представлена запись пульсовых колебаний артериального давления в начальной части аорты. У здоровых молодых людей максимальное, или систолическое, давление равно примерно 120 мм рт. ст., а минимальное, или диастолическое, давление — примерно 80 мм рт. ст. Разницу между систолическим и диастолическим давлением (около 40 мм рт. ст.) называют пульсовым давлением. На величину пульсового давления влияют два основных фактора: (1) ударный объем сердца; (2) податливость (растяжимость) артериальной системы. Третий, менее важный фактор — это характер изгнания крови из сердца во время систолы.

В общем, чем больше величина ударного объема, тем большее количество крови должно вместиться в артериальные сосуды во время каждого сердечного сокращения, следовательно, тем значительнее будет систолическое повышение и диастолическое понижение давления, что приведет к увеличению пульсового давления. И наоборот, чем меньше податливость артериальной стенки (т.е. резервная емкость артериальной системы), тем большим окажется подъем давления при одном и том же ударном объеме крови, поступающем в артерии. В средней части верхней кривой на рисунке показано, что пульсовое давление в пожилом возрасте может увеличиваться более чем в 2 раза по сравнению с нормой, т.к. артерии становятся жестче в результате атеросклероза и емкость их существенно уменьшается.

Можно сказать, что пульсовое давление определяется отношением величины ударного объема к резервной емкости артериальной системы. Любые изменения гемодинамики, которые влияют на эти два фактора, влияют также на величину пульсового давления.

колебания давления

Изменения пульсового давления

Многие нарушения гемодинамики вызывают не только изменение величины пульсового давления, но и рисунка пульсового колебания давления. Особенно значимыми нарушениями являются аортальный стеноз, незаращение артериального протока, недостаточность аортального клапана.

При аортальном стенозе диаметр отверстия при открытых аортальных клапанах существенно уменьшается по сравнению с нормой. Пульсовое давление в аорте при этом также уменьшается, поскольку происходит снижение кровотока через стенозированные клапаны.

При незаращении артериального (боталлова) протока примерно половина ударного объема крови, который из левого желудочка должен поступить в аорту, по широко открытому протоку сразу же поступает в легочную артерию и систему легочных сосудов. Это сопровождается значительным падением диастолического давления перед каждым следующим сердечным сокращением.

При недостаточности аортальных клапанов отсутствуют или не полностью закрываются клапаны аорты. Следовательно, после каждого сердцебиения кровь, попавшая в аорту, тут же возвращается в левый желудочек. В результате аортальное давление во время диастолы падает до нуля. Кроме того, на кривой аортального давления отсутствует инцизура, т.к. аортальные клапаны не закрываются.

– Также рекомендуем “Пульсовая волна. Аускультативный метод измерения давления”

Оглавление темы “Давление крови. Венозный кровоток”:

1. Гематокрит. Зависимость кровотока от давления

2. Растяжимость сосудов. Емкость сосудов

3. Кривые объем-давление артериальных и венозных сосудов. Релаксация сосудистой стенки

4. Пульсовые колебания артериального давления. Изменения пульсового давления

5. Пульсовая волна. Аускультативный метод измерения давления

6. Среднее артериальное давление. Вены и венозное давление

7. Сопротивление венозных сосудов. Влияние гравитации на венозное давление

8. Клапаны вен и венозный насос. Несостоятельность венозных клапанов

9. Методы измерения венозного давления. Емкостная функция вен

10. Депо эритроцитов – селезенка. Обновление крови

Источник

Читайте также:  Исследование артериального давления методом короткова