Повышенное гидростатическое давление это

Повышенное гидростатическое давление это thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 июня 2020;
проверки требует 1 правка.

Гидростатическое давление — давление столба жидкости над условным уровнем.

Благодаря полной удобоподвижности своих частиц капельные и газообразные жидкости, находясь в покое, передают давление одинаково во все стороны; давление это действует на всякую часть плоскости, ограничивающей жидкость, с силой Р, пропорциональной величине w этой поверхности, и направленной по нормали к ней. Отношение P/w, то есть давление р на поверхность, равную единице, называется гидростатическим давлением[1].

Простое уравнение P = pw может действительно служить для точного вычисления давления на данную поверхность сосуда, газов и капельных жидкостей, находящихся при таких условиях, что часть давления, зависящая от собственного веса жидкостей, ничтожно мала по сравнению с давлением, передаваемым им извне. Сюда относятся почти все случаи давлений газов и расчеты давлений воды в гидравлических прессах и аккумуляторах[1].

Вычисление[править | править код]

В каждой жидкости существует давление, обусловленное её собственным весом ; так как , то ; учтём, что и получим формулу .

Плотность жидкости зависит от температуры. Для очень точных вычислений плотность следует рассчитывать по специальной формуле. Давление на данной глубине одинаково во всех направлениях. Суммарное давление, обусловленное весом столба жидкости и давлением поршня, называют гидростатическим давлением[2].

Для бытовых расчетов можно принять, что с ростом глубины на каждые 10 метров пресной воды, давление увеличивается на 0,1 МПа (1 атмосфера).

История открытия[править | править код]

Это основное свойство жидкостей было открыто и проверено на опыте Блезом Паскалем в 1653 г., хотя несколько ранее оно было уже известно Стевину[источник не указан 1062 дня].

Единица измерения[править | править код]

Единицей измерения давления в международной системе единиц является Паскаль. На практике гидростатическое давление часто измеряют в атмосферах, принимая за 1 атмосферу давление в 76 см ртутного столба, при температуре 0 °C при нормальном ускорении свободного падения 9,80665 м/с².

На основании гидростатического парадокса можно гидростатическое давление измерять также высотой столба ртути или воды, способного производить то же давление на единицу поверхности.

Свойства[править | править код]

Гидростатический парадокс[править | править код]

Гидростатическое давление на тело не зависит от направления.

Вычисление немного усложняется, когда надо узнать давление, производимое на не горизонтальную часть стенки сосуда вследствие тяжести налитой на него жидкости. Здесь причиной давления становится вес столбов жидкости, имеющих основанием каждую бесконечно малую частицу рассматриваемой поверхности, а высотой вертикальное расстояние от каждой такой частицы до свободной поверхности жидкости. Расстояния эти будут постоянны только для горизонтальных частей стенок и для бесконечно узких горизонтальных полосок, взятых на боковых стенках; к ним одним можно прилагать непосредственно формулу гидростатического давления. Для боковых же стенок надо суммировать, по правилам интегрального исчисления, давления на все горизонтальные элементы их поверхности; в результате получается общее правило: давление тяжелой жидкости на всякую плоскую стенку равняется весу столба этой жидкости, имеющему основанием площадь этой стенки, а высотой вертикальное расстояние её центра тяжести от свободной поверхности жидкости. Поэтому давление на дно сосуда будет зависеть только от величины поверхности этого дна, от высоты уровня жидкости в него налитой и от её плотности, от формы же сосуда оно зависеть не будет. Это положение известно под именем «гидростатического парадокса» и было разъяснено ещё Паскалем.

Действительно, оно кажется на первый взгляд неверным, потому что в сосудах с равными доньями, наполненными до равной высоты одной и той же жидкостью, вес её будет очень различный, если формы различны. Но вычисление и опыт (сделанный в первый раз Паскалем) показывают, что в сосуде, расширяющемся кверху, вес излишка жидкости поддерживается боковыми стенками и передается весам через их посредство, не действуя на дно, а в сосуде, суживающемся кверху, гидростатическое давление на боковые стенки действует снизу вверх и облегчает весы ровно на столько, сколько весило бы недостающее количество жидкости.

Закон Паскаля[править | править код]

Чем глубже, тем выше давление. (левая часть графика)

Гидростатическое давление жидкости с постоянной плотностью в однородном поле тяжести ( = несжимаемая жидкость) подчиняется закону Паскаля:

где:

 — плотность [для пресной воды: ρ ≈ 1000 кг/м³]
 — ускорение свободного падения [для Европы: g ≈ 9,81 м/с²]
 — высота (здесь: жидкости) [м]
 — [Па]

⇒ = гидростатическое давление (p) зависит от высоты (h) жидкости.[4]

Примечания[править | править код]

Литература[править | править код]

  • В. В. Лермантов. Гидростатическое давление // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1893. — Т. VIIIa. — С. 655—656.

Источник

Гидростатическое давление

Гидростатическое давление – это давление, производимое на жидкость силой тяжести.

Гидростатикой называется раздел гидравлики, в котором изучаются законы равновесия жидкостей и рассматривается практическое приложение этих законов.

Для того, чтобы понять гидростатику необходимо определиться в некоторых понятиях и определениях.

Закон Паскаля для гидростатики.

В 1653 году французским ученым Б. Паскалем был открыт закон, который принято называть основным законом гидростатики.

Звучит он так:

Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.

Закон Паскаля легко понимается если взглянуть на молекулярное строение вещества. В жидкостях и газах молекулы обладают относительной свободой, они способны перемещаться друг относительно друга, в отличии от твердых тел. В твердых телах молекулы собраны в кристаллические решетки.

Читайте также:  Что вызывает повышенное сердечное давление

Относительная свобода, которой обладают молекулы жидкостей и газов, позволяет передавать давление производимое на жидкость или газ не только в направлении действия силы, но и во всех других направлениях.

Закон Паскаля для гидростатики нашел широкое распространение в промышленности. На этом законе основана работа гидроавтоматики, управляющей станками с ЧПУ, автомобилями и самолетами и многих других гидравлических машин.

Определение и формула гидростатического давления

Из описанного выше закона Паскаля вытекает, что:

Величина гидростатического давления не зависит от формы сосуда, в котором находится жидкость и определяется произведением

P = ρgh , где

ρ – плотность жидкости

g – ускорение свободного падения

h – глубина, на которой определяется давление.

Гидростатическое давление в сосуде

Для иллюстрации этой формулы посмотрим на 3 сосуда разной формы.

Во всех трёх случаях давление жидкости на дно сосуда одинаково.

Полное давление жидкости в сосуде равно

P = P0 + ρgh, где

P0 – давление на поверхности жидкости. В большинстве случаев принимается равным атмосферному.

Сила гидростатического давления

Выделим в жидкости, находящейся в равновесии, некоторый объем, затем рассечем его произвольной плоскостью АВ на две части и мысленно отбросим одну из этих частей, например верхнюю. При этом мы должны приложить к плоскости АВ силы, действие которых будет эквивалентно действию отброшенной верхней части объема на оставшуюся нижнюю его часть.

Гидростатическое давление на точку

Рассмотрим в плоскости сечения АВ замкнутый контур площадью ΔF, включающий в себя некоторую произвольную точку a. Пусть на эту площадь воздействует сила ΔP.

Тогда гидростатическое давление формула которого выглядит как

Рср = ΔP / ΔF

представлет собой силу, действующую на единицу площади, будет называться средним гидростатическим давлением или средним напряжением гидростатического давления по площади ΔF.

Истинное давление в разных точках этой площади может быть разным: в одних точках оно может быть больше, в других – меньше среднего гидростатического давления. Очевидно, что в общем случае среднее давление Рср будет тем меньше отличаться от истинного давления в точке а, чем меньше будет площадь ΔF, и в пределе среднее давление совпадет с истинным давлением в точке а.

Для жидкостей, находящихся в равновесии, гидростатическое давление жидкости аналогично напряжению сжатия в твердых телах.

Единицей измерения давления в системе СИ является ньютон на квадратный метр (Н/м2) – её называют паскалем (Па). Поскольку величина паскаля очень мала, часто применяют укрупненные единицы:

килоньютон на квадратный метр – 1кН/м2 = 1*103 Н/м2

меганьютон на квадратный метр – 1МН/м2 = 1*106 Н/м2

Давление равное 1*105 Н/м2 называется баром (бар).

В физической системе единицей намерения давления является дина на квадратный сантиметр (дина/м2), в технической системе – килограмм-сила на квадратный метр (кгс/м2). Практически давление жидкости обычно измеряют в кгс/см2, а давление равное 1 кгс/см2 называется технической атмосферой (ат).

Между всеми этими единицами существует следующее соотношение:

1ат = 1 кгс/см2 = 0,98 бар = 0,98 * 105 Па = 0,98 * 106дин = 104 кгс/м2

Следует помнить что между технической атмосферой (ат) и атмосферой физической (Ат) существует разница. 1 Ат = 1,033 кгс/см2 и представляет собой нормальное давление на уровне моря. Атмосферное давление зависит от высоты расположения места над уровнем моря.

Измерение гидростатического давления

Гидростатическое давление одинаково

На практике применяют различные способы учета величины гидростатического давления. Если при определении гидростатического давления принимается во внимание и атмосферное давление, действующее на свободную поверхность жидкости, его называют полным или абсолютным. В этом случае величина давления обычно измеряется в технических атмосферах, называемых абсолютными (ата).

Часто при учете давления атмосферное давление на свободной поверхности не принимают во внимание, определяя так называемое избыточное гидростатическое давление, или манометрическое давление, т.е. давление сверх атмосферного.

Манометрическое давление определяют как разность между абсолютным давлением в жидкости и давлением атмосферным.

Рман = Рабс – Ратм

и измеряют также в технических атмосферах, называемых в этом случае избыточными.

Случается, что гидростатическое давление в жидкости оказывается меньше атмосферного. В этом случае говорят, что в жидкости имеется вакуум. Величина вакуума равняется разнице между атмосферным и и абсолютным давлением в жидкости

Рвак = Ратм – Рабс

и измеряется в пределах от нуля до атмосферы.

Свойства гидростатического давления

Свойства гидростатического давления

Гидростатическое давление воды обладает двумя основными свойствами:
  Оно направлено по внутренней нормали к площади, на которую действует;
  Величина давления в данной точке не зависит от направления (т.е. от ориентированности в пространстве площадки, на которой находится точка).

Первое свойство является простым следствием того положения, что в покоящейся жидкости отсутствуют касательные и растягивающие усилия.

Предположим, что гидростатическое давление направлено не по нормали, т.е. не перпендикулярно, а под некоторым углом к площадке. Тогда его можно разложить на две составляющие – нормальную и касательную. Наличие касательной составляющей из-за отсутствия в покоящейся жидкости сил сопротивления сдвигающим усилиям неизбежно привело бы к движению жидкости вдоль площадки, т.е. нарушило бы её равновесие.

Поэтому единственным возможным направлением гидростатического давления является его направление по нормали к площадке.

Если предположить что гидростатическое давление направлено не по внутренней, а по внешней нормали, т.е. не внутрь рассматриваемого объекта а наружу от него, то вследствие того, что жидкость не оказывает сопротивления растягивающим усилиям – частицы жидкости пришли бы в движение и её равновесие было бы нарушено.

Читайте также:  Покалывание тела при повышенном давлении

Следовательно, гидростатическое давление воды всегда направлено по внутренней нормали и представляет собой сжимающее давление.

Из этого же правило следует, что если измениться давление в какой-то точке, то на такую же величину измениться давление в любой другой точке этой жидкости. В этом заключается закон Паскаля, который формулируется следующим образом: Давление производимое на жидкость, передается внутри жидкости во все стороны с одинаковой силой.

На применение этого закона основываются действие машин, работающих под гидростатическим давлением.

Ещё одним фактором влияющим на величину давления является вязкость жидкости, которой до недавнего времени приято было пренебрегать. С появлением агрегатов работающих на высоком давлении вязкость пришлось так же учитывать. Оказалось, что при изменении давления, вязкость некоторых жидкостей, таких как масла, может изменяться в несколько раз. А это уже определяет возможность использовать такие жидкости в качестве рабочей среды.

Вместе со статьей “Гидростатическое давление: определение, формула и свойства.” читают:

Источник

Что это такое?

Гидростатическое давление – давление столба воды над условным уровнем. Гидростатическое давление также заменяться аббревиатурой ГДВ.

Свойства

В каждой статичной жидкой среде всегда присутствует напряжение сжатия. К примеру, вода, размещенная в условном баке, станет давить на его стенки и дно. А если погрузить в воду какой-либо предмет, то можно с уверенностью сказать, что этот предмет окажется под воздействием силовой нагрузки.

К основным свойствам гидростатического давления относят три закономерности:

  1. ГДВ всегда направлено перпендикулярно той площадке, на которую оно оказывает действие. Стенки емкостей бывают вертикальными, бывают наклонными. На направление действия силы это совершенно не влияет. Давление внутри емкости все равно будет направлено под углом 90° к стенкам.
  2. В любой точке жидкости величина ГДВ неизменна по всем направлениям. Свойство №2 объясняется молекулярным строением воды. Частицы в жидкостях довольно свободны, и способны легко перемещаться относительно друг друга. У твердых материалов молекулы собраны в кристаллические решетки, поэтому их форма неизменна.

    Из этого обстоятельства следует, что когда давление распространяется на конкретный объем воды, в котором молекулы не имеют прочных связей, то оно одинаково действует во все стороны. При этом сила этого давления имеет одну и ту же величину.

  3. ГДВ в некоторой точке будет зависеть от ее месторасположения в пространстве. Это свойство очевидно. Вполне понятно, что чем глубже тело опустится в жидкую среду, тем больше окажется показатель ГДВ. И, наоборот, при незначительном погружении, ГДВ будет маленьким.

От чего зависит параметр?

Для того чтобы рассчитать параметр давления в заданной точке, необходимо знать все о ее местоположении.

Повышенное гидростатическое давление этоИ учесть, что на усилие сжатия влияют следующие факторы:

  • плотность воды;
  • глубина погружения.

Может показаться странным, но размер и форма емкости на показатель ГДВ совершенно не влияют.

Чему в среднем равна гидростатика H2O?

Молекулярные частицы, собранные в некотором объеме, подвержены воздействию силы сжатия. Разные молекулы испытывают разное ГДВ. Это зависит от конкретного местоположения частиц в водном объеме. На поверхности сжатие меньше, на глубине, больше.

Вычислить значение ГДВ можно по формуле: P = pgh,

где:

  • p – плотность воды (зависит от температуры, в округленном значении – 1 г/мл);
  • g – значение ускорения свободного падения (9,8 м/сек²);
  • h – глубина, где будет определяться давление.

Повышенное гидростатическое давление это

Чтобы узнать среднее значение ГДВ для заданного объема, следует воспользоваться формулой:

Pср = P/S, где:

  • P – гидростатическое давление, действующее на дно резервуара с водой;
  • S – площадь дна емкости.

Как определить?

Узнать ГДВ в требуемой точке возможно с помощью уравнения, которое называется: основное уравнение гидростатики. Выражено оно в виде:

 P = P0 + yh,

где:

  • P0 – давление на внешней поверхности жидкости (атмосферное);
  • y – удельный вес воды;
  • h – высота водного столба (глубина).

Показательно, что ГДВ в заданной точке будет равно величине, состоящей из суммы значений: вес атмосферного столба и вес водного слоя. Наименование у этого параметра – полное давление.

Если на водную поверхность давит сила, которая больше атмосферной нагрузки, то такой вид воздействия будет именоваться, как избыточное давление. Он выражается разностью между полным и атмосферным давлением:

 Pизб = Pполн — Pатм

Пояснительным примером может послужить компрессор холодильника, который создает избыточное сжатие  газа в герметичной камере.

Практическое применение знаний

На практике законы гидравлики широко распространены в современном мире техники.

Повышенное гидростатическое давление этоНа их основе построена работа различного оборудования, например, такого как:

  • измерительные приборы;
  • насосы;
  • компрессоры;
  • гидравлические прессы;
  • гидравлические домкраты и др.

Вся гидроавтоматика, управляющая работой, от автомобилей, до космических кораблей, разработана благодаря этим знаниям.

Заключение

Гидростатическое давление воды – это очень важный показатель. Он позволяет производить не только расчеты при разработке и производстве различных устройств, работающих на основе законов гидростатики.

Его часто задействуют и простые люди, на самом обычном бытовом уровне, даже не подозревая об этом. Например, используя прибор для измерения артериального давления, или включая насос на даче.

Три свойства, которыми обладает гидростатика воды, остаются неизменными при любых обстоятельствах, что полезно помнить. Ведь при необходимости, можно даже самостоятельно произвести какие-либо математические расчеты. Например, вычислить ГДВ на дне моря или океана.

А какова Ваша оценка данной статье?

Читайте также:  Основные симптомы повышенного давления

Источник

Гипотеза декомпрессионной болезни. Влияние повышенного гидростатического давления

Исследования газовых пузырьков в тканях экспериментальных животных и образцах крови при декомпрессии в стеклянных камерах, проведенные Бойлем в 1670 г., создали предварительную основу для современных гипотез о патофизиологии декомпрессии. Эти гипотезы — «суррогат» результатов нескольких параллельных направлений исследования, появившегося в прошлом веке. Важнейшие из них следующие:

1. Влияние повышенного гидростатического давления на живые ткани как изолированной переменной.

2. Влияние повышенного парциального давления как нейтрального газа, так и метаболических газов на ткани.

3. Регуляция поглощения и элиминации в тканях нейтрального газа (а следовательно, и появление в тканях нерастворенного нейтрального газа).

4. Механическое воздействие нерастворенного газа (высвобожденного из раствора) на неподвижные ткани и сердечнососудистую систему.

5. Влияние поверхности газового пузырька (местное и отдаленное).

Совпадения этих «специфических» явлений декомпрессии с физиологическими проявлениями обусловлены физической нагрузкой, тепловым потоком и другим «неспецифическим» стрессором.

декомпрессионная болезнь

Влияние повышенного гидростатического давления

Несмотря на то что воздействие повышенного гидростатического давления обязательно предшествует всем декомпрессионным ситуациям при погружениях, экспериментальному установлению влияния такого воздействия на развитие в последующем симптомов, связанных с декомпрессией, было уделено недостаточное внимание. Установлено, что давление само по себе может оказывать глубокие влияния на биологические системы от простых до сложных проявлений.

И если рассматривать организм в целом, то эти эффекты представляют конечные результаты сложного комплекса взаимодействий на молекулярном, субклеточном, клеточном и тканевом уровнях. Наиболее очевидным кратковременным воздействием давления является нарушение функции мембран в возбуждаемых клетках. И, действительно, «нервный синдром высокого давления» (НСВД), как считали, представляет (хотя бы отчасти) сложное дисфункциональное состояние ЦНС, вызванное давлением. Было показано, что в изолированно перфузируемой ткани сердца животного при абсолютном давлении 100—150 мкг/см2 возникают изменения проводимости, ведущие к аритмии. Эти изменения зависят от скорости компрессии, давления и температуры [Doubt, Hogan, 1980].

Современные данные о воздействии на человека абсолютного давления 65 и 69 кгс/см2 в состоянии насыщения тканей организма нейтральным газом навели на мысль, что другие «возбудимые» клетки, а именно кровяные пластинки могут изменять свое поведение при таком большом давлении [Andersen, Bennett, 1981]. Показано также, что повышенное гидростатическое давление влияет как на активность мембранного натриевого насоса, так и коэффициент распределения ионов хлора в красных клетках крови человека [Goldinger et al., 1980].

В исследованиях на одноклеточных организмах продемонстрированы довольно резкие изменения механизмов гомеостаза клетки под воздействием давления, причем обратимость этих изменений, по-видимому, зависит от продолжительности воздействия. Следовательно, интуитивно кажется ясным, что указанное равновесие, вследствие воздействия давления на многоклеточные организмы, будет наиболее чувствительно к продолжительности воздействия очень высокого давления.

Кроме того, поскольку определенные изменения у простейших организмов под воздействием давления могут происходить на уровне синтеза нуклеиновых кислот, функции полисом, сборки митотических веретен (при этом, возможно, изменяется как синтез белка в клетке, так и репродуктивная способность), по-видимому, у тканей с высоким уровнем обмена, таких как гастроинтестинальный эпителий, кожа и гематопоэтическая ткань, будет снижен митоз, созревание и трансформации.

В результате длительной экспозиции давления могут быть повреждены эндотелиальные клетки, в которых ферменты, связанные с мембраной, синтезируют защитные простагландины [Weksler et al., 1978]. Кроме того, может также нарушиться функция макрофагов и Б-лимфоцитов, молекулярные механизмы которых чувствительные к давлению, отвечают за взаимодействие с антигенами, клеточное превращение и синтез иммуноглобулина.

Вероятно, величина этих изменений коррелирует (по крайней мере не сильно) с величиной гидростатического давления и продолжительностью экспозиции. Следовательно, давление само по себе может вызвать изменения в клетке, которые будут беспрепятственно существовать в период декомпрессии после длительного пребывания в состоянии насыщения тканей организма нейтральным газом и давать измененные субстраты, посредством которых декомпрессионные нарушения могут накладываться одно на другое.

Другие явления, такие как гемоконцентрация, лейкоцитоз и увеличение в плазме уровней реактивных белков острой фазы, которые долгое время считали предвестниками или спутниками болезни декомпрессии, были обнаружены во время компрессии и нахождения на грунте при очень глубоководных погружениях. Это наводит на мысль, что время наблюдения за данными показателями критично в отношении причинности [Andersen, Bennett, 1981].

Хотя планирование постановки большинства экспериментов ведет к выявлению данных феноменов во время и после декомпрессионной фазы погружения, экспозиция повышенного гидростатического давления, по-видимому, тоже способна вызвать эти изменения. Однако после неглубоководного и кратковременного погружения в воздушной среде такие явления лучше всего коррелируют с тяжестью декомпрессии.

– Вернуться в оглавление раздела “Физиология человека.”

Оглавление темы “Газовые пузыри при декомпрессии”:

1. Давление в правом желудочке при газовой эмболии. Повышение давления в правом желудочке

2. Прекардиальный доплеровский датчик. Исследование декомпрессии доплерографией

3. Интерпретация прекардиальных сигналов. Сигналы от газовых пузырьков

4. Результаты прекардиального наблюдения. Допплерографии как метод декомпрессии водолазов

5. Метод детекции газа доплером. Классификация прекардиально диагносцируемых газовых пузырьков

6. Виды образуемых газовых пузырьков при декомпрессии. Применение допплера газовых пузырьков

7. Газовые пузыри у пловцов. Двухмерно-пространственное сканирование газовых пузырьков

8. Скорость появления газовых пузырей при декомпрессии. Газовые пузыри в нижней полой вене

9. Декомпрессионные нарушения. Болезнь декомпрессии

10. Гипотеза декомпрессионной болезни. Влияние повышенного гидростатического давления

Источник