Серебро нагрели в кислороде при повышенном давлении
Химические свойства серебра
Чистое серебро – блестящий металл, поверхность которого кажется иногда почти белой. Он очень красив и легко поддается обработке, так как сравнительно мягок и его можно без большого труда ковать, резать и вытягивать. Плавится серебро при 961СС и обладает исключительно высокой теплопроводностью и электрической проводимостью. Серебро стоит в электрохимическом ряду после водорода и не может вытеснять его из кислот. Однако металлическое серебро растворимо в тех кислотах, которые проявляют свойства окислителей. Поэтому серебро хорошо реагирует с азотной кислотой:
3Ag + 4HNO3 = 3AgNO3 + NO + 2H2O,
так же в растворах цианистых солей в присутствии кислорода (см. выше).
Несмотря на видимую пассивность, серебро медленно темнеет на воздухе. Если в воздухе есть примесь сероводорода или озона, то образуется слой сульфида или оксида соответственно:
2Ag + H2S + 1/2О2 = Ag2S + H2О
В присутствии паров воды реакция идет уже при комнатной температуре.
При реакции с сероводородом или с серой образуется соединение Ag2S – вещество темного цвета, отличающееся почти полной нерастворимостью в воде (его произведение растворимости равно 10-18).
Отношение серебра к кислороду своеобразно. В обычных условиях (невысокая температура, нормальное давление) взаимодействие между этими двумя элементами практически незаметно. Но расплавленное серебро хорошо растворяет кислород. При охлаждении газ выделяется из металла и иногда происходит разбрызгивание. Тем не менее металлическое серебро все же не безразлично к кислороду. На поверхности металла удалось обнаружить тончайшую пленку оксида – ее толщина всего 1,2 нм, т. е. 0,000 00012 см. Нагревание до 400 °С при повышенном давлении кислорода ведет к развитию реакции окисления и в конце концов серебро все-таки превращается в оксид.
Оксид Ag2О непрочен – его разложение на элементы становится заметным уже при 182 °С. При окислении серебра озоном О3 получается оксид, простейшая формула которого AgO:
Ag + О3 = AgO + О2
Предполагают, что в действительности формула его должна быть написана в виде AgIAgIIIО2, это значит, что он содержит один атом серебра в состоянии окисления (I), a другой в состоянии окисления (III).
При обработке озоном растворов солей серебра в кислой среде получается оксид, содержащий двухвалентное серебро (ион серебра Ag2+):
Ag+ + О3 = AgO+ + О2 (l)
AgO+ + Ag+ + 2H+ = 2Ag2+ + H2О (2)
Лишь о немногих реакциях известны все их детали, так называемый “механизм”. В большинстве случаев удается только в общих чертах, схематически представить себе, как движутся атомы и электроны в процессе превращения веществ. По отношению к этой реакции можно сделать обоснованные предположения.
В первой стадии к иону серебра приближается молекула озона. Озон непрочен и легко отщепляет атом кислорода. Как видно из правой части уравнения, этот атом присоединяется к иону серебра. Может ли атом кислорода удерживаться около положительного иона металла? Так как атом кислорода располагает шестью электронами, а у иона серебра имеется пять пар электронов (d10-уровень), то вполне возможно присоединение кислородного атома к иону серебра за счет одной из этих пар.
Во второй стадии реакции соединение AgO+ реагирует с другим ионом серебра. Сближение ионов серебра, имеющих много электронов, позволяет атому кислорода, который вообще стремится захватить два электрона (т. е. дополнить свою электронную оболочку до восьми – октета – электронов), получить недостающие ему два электрона, оторвав их от ионов серебра. Ионы серебра при этом приобретают заряд, равный двум. Можно было бы допустить, что получится Ag2+O2-, но в растворе, как видно из уравнения (2), присутствуют ионы водорода (кислая среда создана добавлением азотной кислоты) и ион кислорода соединяется с ионами водорода, образуя прочное соединение – воду. В результате получается соль Ag(NO3)2. Это одна из самых важных солей. Она растворима в воде и ее раствор – ляпис – обладает бактерицидным действием, благодаря присутствию ионов серебра.
С хлороводородом при нагревании (около 600 °С) реакция идет так:
2Ag+2HCI = 2AgCI + H2
Хотя эта реакция, на первый взгляд, кажется странной – ведь известно, что серебро (как металл малоактивный) не вытесняет водород из кислот и нерастворимо в соляной кислоте.
Следует обратить внимание на то, что реакции протекают в газообразной среде, получающийся водород имеет возможность удаляться. При этом равновесие сдвигается вправо и образуется хлорид серебра. При проведении реакции в атмосфере хлороводорода так, чтобы водород не уходил из сферы реакции, устанавливается равновесие (при 600 °С), в смеси накапливается 7,2 % водорода. Если же повысить концентрацию водорода, добавив в смесь газов водород, то реакция пойдет преимущественно в сторону образования металлического серебра, т. е. справа налево. Такие реакции называются, как известно, обратимыми – их направление определяется относительными концентрациями (или давлениями, если речь идет о газах) веществ, участвующих в реакции.
Серебро способно замещать атомы водорода и в углеводородах. При пропускании газа ацетилена С2Н2 получается взрывчатый ацетиленид серебра C2Ag2. Ни органические кислоты, ни растворы щелочей или солей щелочных металлов на серебро не действуют. В концентрированной H2SO4 оно растворяется при нагревании:
2Ag + 2H2SO4 = Ag2SO4 +SO2 + 2H2O
Источник
По своей химической активности серебро занимает промежуточное положение между золотом и медью. С кислородом серебро непосредственно не соединяется, но в расплавленном состоянии растворяет около 20 объемов кислорода на один объем металла.
В твердом серебре растворимость кислорода мала, поэтому при затвердевании расплавленного серебра происходит выделение растворенного в нем кислорода, сопровождающееся иногда разбрызгиванием металла.
С водородом, азотом и углеродом серебро непосредственно не взаимодействует. Фосфор действует на серебро лишь при температуре красного каления с образованием фосфидов.
При нагревании с серой серебро легко образует сульфид Ag2S. Это же соединение получается при действии на серебро газообразной серы, выделяющейся при термической диссоциации некоторых сульфидов (пирита, пирротина, халькопирита), и при нагреве металла в контакте с этими сульфидами. При воздействии сероводорода поверхность серебра покрывается черной пленкой Ag2S. Процесс медленно идет уже в обычных условиях и является причиной постепенного потемнения серебянных изделий.
Серебро взаимодействует также со свободными хлором, бромом и иодом с образованием соответствующих галогенидов. Эти процессы медленно протекают, даже при обычных температурах и ускоряются в присутствии влаги, при нагревании и под действием света.
Электродный потенциал серебра в водных растворах высок :
Ag → Ag⁺ + е, φ0 = + 0,799В
Поэтому, как и золото, серебро не вытесняет водород из водных растворов кислот, устойчиво по отношению к щелочам. Однако в отличие от золота оно растворяется в кислотах, являющихся достаточно сильными окислителями, например, в азотной и концентрированной серной. Подобно золоту, серебро легко взаимодействует с царской водкой и насыщенной хлором соляной кислотой, но при этом оно остается в нерастворимом остатке вследствие образования малорастворимого хлорида AgCl.
Такие различия в поведении золота и серебра часто используют для разделения этих металлов. Тонкодисперсное серебро в контакте с кислородом воздуха растворяется в разбавленной серной кислоте. Подобно золоту, серебро растворяется также в насыщенных воздухом водных растворах цианидов щелочных и щелочноземельных металлов, в водном растворе тиомочевины в присутствии солей железа (III).
Соединения серебра
В подавляющем большинстве своих соединений серебро имеет степень окисления (+1). Соединения с более высокой степенью окисления серебра (+2 и +3) сравнительно малочисленны и практического значения не имеют.
Оксид серебра Ag2О
Черно-коричневого цвета может быть получен введением щелочи в раствор, содержащий ионы Ag⁺. Вначале, по-видимому, образуется гидроксид, тотчас переходящий в оксид:
Ag⁺ + OH⁻ = AgOH;
2AgOH = Ag2O + Н2О.
Хотя оксид серебра — малорастворимое в воде соединение, его водная суспензия имеет четко выраженную основную реакцию, поэтому соли серебра в водных растворах не гидролизуются и дают нейтральную реакцию. При нагревании до 185—190°С Ag2О разлагается на элементы. Перекись водорода легко восстанавливается Ag2О уже при комнатной температуре:
Ag2О + Н2О2 = 2Ag + Н2О + О2.
В водном растворе аммиака Ag2О растворяется с образованием комплексного соединения:
Ag2О + 4NH4ОH = 2Ag(NH3)2OH + 3H2О.
При стоянии из раствора осаждается чрезвычайно взрывчатый даже во влажном состоянии осадок нитрида серебра Ag3N (гремучее серебро).
Галогениды серебра
Малорастворимые соединения. Исключение составляет лишь легкорастворимый фторид AgF. Хлорид AgCl, бромид AgBr и иодид AgI выпадают в осадок при введении в раствор, содержащий ионы Ag⁺ (например, раствор AgNO3), ионов Сl⁻, Вr⁻ и I⁻. Их произведения растворимости составляют соответственно 1,8 • 10⁻¹º (AgCI), 5,3 • 10⁻¹³ (AgBr) и 8,3 •10⁻¹⁷ (AgI).
В гидрометаллургии и аффинаже благородных металлов широко используют прием осаждения серебра в виде хлорида, осуществляемый введением в серебросодержащие растворы NaCl или НСl. Хлорид серебра плавится при 455°С. Температура кипения AgCl 1550°С, но заметное улетучивание наблюдается уже при температуре выше 1000 °с.
Ионы серебра образуют прочные комплексы с целым рядом ионов и молекул (CN⁻, S2O²3⁻, SO²3⁻ Cl⁻, NH3, CS(NH2)2 и т.д.). Благодаря этому практически нерастворимый в воде AgCl легко растворяется в водных растворах цианистого калия, тиосульфата и сульфита натрия, аммиака, например:
AgCl + 2CN⁻ = Ag (CN)F + Сl⁻;
AgCl + 2S2C²3⁻ = Ag (S2O2)³2⁻ + Сl⁻;
AgCl + 2NH4OH = Ag(NH3)2+ + Сl⁻ + 2H2O.
Вследствие образования комплексов с ионами Сl³⁻ хлорид серебра заметно растворим также в концентрированных соляной кислоте и растворах других хлоридов:
AgCl + Сl⁻ = AgCl⁻ 2.
Например, в концентрированном растворе NaCl растворимость хлорида серебра составляет 6,7•10³⁻моль/л (0,72 г/л Ag) против 1,3•10⁻⁵ в воде. Концентрированные растворы NaCl использовали ранее для выщелачивания серебра из огарков хлорирующего обжига.
Таким образом при введении хлор-ионов в серебросодержащие растворы концентрация серебра вначале падает (образование AgCl), а затем начинает возрастать (в ре-зультате комплексообразования). Поэтому для достижения полноты осаждения серебра следует избегать большого избытка ионов хлора.
Электроотрицательными металлами (цинком, железом) .хлорид серебра, взятый в виде суспензии в разбавленной серной кислоте, легко восстанавливается до металла. Этот простой прием получения металлического серебра из его хлорида широко применяют в аффинажном производстве.
Бромид серебра AgBr похож по своим свойствам на AgCl. Он растворим в аммиачных, тиосульфатных, сульфитных и цианистых растворах, легко восстанавливается до металла.
Иодид AgI
Наименее растворимый из галогенидов серебра, поэтому в отличие от AgCl и AgBr он не растворим в аммиачных растворах, но растворим в присутствии ионов CN⁻ и S2O²3⁻ , с которыми серебро образует более прочные, нежели с аммиаком, комплексы. Заметной растворимостью AgI обладает также в концентрированных растворах иодидов щелочных металлов, что объясняется образованием комплексных ионов AgI⁻2.
Весьма характерной и важной особенностью труднорастворимых галогенидов серебра является их светочувст-вительность, заключающаяся в том, что под действием света они разлагаются на металлическое серебро и свободный галоид:
2AgГ=2Ag+Г2
Это свойство галоидных солей серебра лежит в основе их применения для производства фотоматериалов — светочувствительных пленок, пластинок и бумаги. Светочувствительность галидов серебра возрастает в ряду AgI<AgCl<AgBr, поэтому чаще всего для производства фотоматериалов используют бромид серебра.
К галогенидам серебра очень близок по своим свойствам цианид AgCN. Он выпадает в виде белого осадка при добавлении к раствору, содержащему ионы Ag⁺, раствора цианида щелочного металла (без избытка). Подобно галогенидам серебра, AgCN практически нерастворим в воде (произведение растворимости 2.3•10⁻¹⁶) и разбавленных кислотах, но растворим в аммиачных, тиосульфатных и цианистых растворах, вследствие образования соответствующих комплексных соединений. В отличие от галогенидов цианид серебра под действием света не разлагается.
Нитрат серебра
Из других соединений серебра большое практическое значение имеют нитрат и сульфат серебра.
Нитрат серебра AgNО3 получают действием азотной кислоты на металлическое серебро:
3Ag + 4HNO3 = 3AgNО3 + NO + 2H2О.
Нитрат серебpa представляет собой бесцветные негигроскопичные кристаллы, плавящиеся при 208,5 °С ; при температуре выше 350 °С термически разлагается. AgNО3 очень легко растворяется в воде. При 20 °С его растворимость составляет 222 г на 100 г воды, при 100 °С она возрастает до 952 г на 100 г.
В присутствии органических веществ нитрат серебра чернеет вследствие частичного восстановления до металла.
Нитрат серебра — технически наиболее важное соединение этого металла. Эта соль служит исходным продуктом для приготовления остальных соединений серебра. Водный раствор AgNO3 используют в качестве электролита при электролитическом рафинировании серебра.
Сульфат серебра Ag2SO4
Может быть получен растворением металлического серебра в горячей концентрированной серной кислоте:
2Ag + 2H2SO4 = Ag2SO4 + SO2 + 2Н2O.
Сульфат серебра образует бесцветные кристаллы, плавящиеся при 660°С. При температуре выше 1000°С термически разлагается. Растворимость Ag2SO4 в воде невелика, при 25°С она составляет 0,80 г на 100 г воды. В концентрированной серной кислоте растворимость значительно выше вследствие образования более растворимого бисульфата AgHSO4.
Сульфид серебра Ag2S — наиболее трудно растворимая соль этого металла (произведение растворимости 6.3• 10⁻⁵º). Он выпадает в виде черного осадка при пропускании сероводорода через растворы солей серебра. Образование Ag2S происходит также при действии H2S на металлическое серебро в присутствии влаги и кислорода воздуха;
4Ag + 2H2S + O2 = 2Ag2S + 2Н2O
Как было отмечено, этот процесс является причиной потемнения серебряных изделий при длительном хранении. Сульфид серебра можно получить также непосредственно из элементов, нагревая металлическое серебро с элементарной серой.
В цианистых растворах Ag2S растворяется в результате образования комплексного соединения:
Ag2S + 4CN⁻ ⇄ 2Ag(CN)⁻2 + S²⁻
Эта реакция обратима, протеканию ее слева направо способствует повышение концентрации иновов CN⁻ и удаление ионов S²⁻ окислением их кислородом продуваемого воздуха.
С разбавленными минеральными кислотами Ag2S не взаимодействует. Концентрированная серная и азотная кислота окисляют сульфид серебра до сульфата. При нагревании в атмосфере воздуха Ag2S разлагается с образованием металлического серебра и диоксида серы:
Ag2S + О2 = 2Ag + SО2
Из ранее упоминавшихся комплексных соединений серебра наибольший интерес для гидрометаллургии этого металла представляют хорошо растворимые комплексные цианистые соединения калия, натрия и кальция. Подобно аналогичным соединениям золота, комплексные цианиды серебра образуются при растворении металлического серебра в растворе соответствующего цианида при доступе кислорода воздуха:
4Ag + 8CN⁻ + О2 + 2Н2О = 4Ag(CN)7 + 4ОН⁻
Эта реакция, как и аналогичная реакция с золотом, лежит в основе процесса цианирования.
Как и золото, серебро растворяется в водных растворах тиомочевины в присутствии солей Fe(III),образуя комплексные катионы Ag[CS(NH2)2]⁺2
Статья на тему химические свойства серебра
Источник
§ 29. Серебро.
С водородом серебро и его аналоги (Cu, Au) не реагируют даже при повышенных температурах. Однако есть данные, что оно реагирует с атомарным водородом при обычной температуре с образованием AgH. Известно нестойкое соединение AgH
Ag*(H).
Для бора данные не найдены
Ag*(В).
С углеродом серебро и его аналоги не соединяются. Однако имеются сведения, что халькогены, фосфор, мышьяк и углерод реагируют с нагретым серебром с образованием соответствующих бинарных соединений.
Действием ацетилена на аммиачный раствор соли серебра можно получить ацетиленид Ag2C2. В сухом состоянии он чрезвычайно взрывчат
Ag*(С).
С азотом серебро и его аналоги не соединяются. Существующий нитрид Ag2N взрывчат даже во влажном состоянии.
Нитрид серебра также эндотермичен. Его коричневые кристаллы могут быть получены введением ацетона (или спирта) в аммиачный раствор Ag2O. При стоянии аммиачных растворов солей серебра Ag3N собирается на дне сосуда в виде чёрного осадка, чрезвычайно взрывчатого даже во влажном состоянии. Вероятно, осадок этот содержит также имид серебра Ag2NH
Ag*(N).
На воздухе на поверхности серебра оптическими исследованиями установлено наличие окисной пленки толщиной до 12 ангстрем. При нагревании до 1700С на воздухе серебро покрывается пленкой оксида Ag2O. При умеренном нагревании (300 – 4000С) этого металла в атмосфере кислорода образуется и более толстая поверхностная плёнка окисла, а при избыточном давлении кислорода (20 атм.) серебро может окисляться нацело. Существуют также оксиды Ag2O2 и AgO.
Ag2О имеет тёмно – бурый цвет. Желтоватый карбонат серебра при нагревании выше 1000С начинает разлагаться по схеме
Ag2CO3 = Ag2O + CO2.
Для серебра двухвалентное состояние малохарактерно. Чёрный окисел AgO образуется под действием на серебро озона
Ag + O3 = AgO + O2.
Удобнее он может быть получен по реакции
2AgNO3 + K2S2O8 + 4KOH = 2AgO↓ + 2K2SO4 + 2H2O
Ag*(O).
В присутствии влаги галогены реагируют с серебром, давая галогениды AgГ. Известны Ag2F, AgF, AgI. Серебро медленно соединяется с хлором, бромом и йодом уже при обычной температуре. Cоединение AgF2 образуется из элементов, если на серебро действовать фтором при очень высокой температуре. С компактным серебром фтор реагирует ниже температуры красного каления и только с поверхности; выше 4500С образуется AgF. Взаимодействие серебра и его аналогов с галогенами сильно ускоряется в присутствии влаги, при нагревании и под действием света.
Известны белое AgCl, желтоватое AgBr и жёлтое AgI.
При нагревании металлического серебра в атмосфере хлористого водорода имеет место обратимая реакция
2Ag + 2HCl = 2AgCl + H2.
Равновесие быстро устанавливается уже при 2000С.
Фтористое серебро может быть получено взаимодействием Ag2CO3 в HF. Сразу в безводном состоянии его удобно получать термическим разложением AgBF4 при 2000С по схеме
AgBF4 = AgF + BF3↑.
Оно светочувствительно к ультрафиолетовым лучам.
Взаимодействием при 50 – 900С избытка насыщенного раствора AgF с мелко раздробленным металлическим серебром (или электролизом такого раствора с серебряным анодом) может быть получен субфторид серебра Ag2F – кристаллы зелёновато – бронзового цвета.
Под действием света протекает реакция распада
2AgГ = 2Ag + Г2.
Распад этот вызывается главным образом лучами сине – фиолетовой части спектра.
Из простых солей двухвалентного серебра хорошо изучено только AgF2. Оно может быть получено действием фтора на мелко раздробленное серебро
Ag*(F ,Сl, Br, I).
Для кремния данные не найдены
Ag*(Si).
Фосфиды серебра AgP2, AgP3 могут быть получены взаимодействием элементов
Ag*(P).
При нагревании с серой образуется сульфид Ag2S, он встречается как минерал.
Взаимодействие Cu2S с раствором AgNO3 протекает по уравнению
Cu2S + 4AgNO3 = Ag2S + 2Ag + 2Cu(NO3)2.
Чёрный сульфид серебра осаждается сульфид – ионом из растворов всех соединений серебра. Образование Ag2S происходит также при действии H2S (в присутствии влаги и кислорода воздуха) на металлическое серебро. Реакция
4Ag + 2H2S + O2 = 2Ag2S + 2H2O
медленно идет уже в обычных условиях и вызывает постепенное потемнение серебряных предметов
Ag*(S).
Данные для мышьяка не найдены. Однако имеются сведения, что халькогены, фосфор, мышьяк и углерод реагируют с нагретым серебром с образованием соответствующих бинарных соединений
Ag*(As).
C селеном и теллуром известны соединения Ag2Se, Ag2Te
Ag*(Sе, Te).
Базовая формула для серебра имеет вид
Ag*(L), L≠B, Si. (29)
Источник