Функциональная система регуляции артериального давления

Функциональная система регуляции артериального давления thumbnail

Подробности

Система регуляции артериального давления сложна и многокомпонентна. В данном материале мы в комплексе рассмотрим эту тему.

1. Регуляция кровообращения.

Функциональная система регуляции артериального давления

Механизмы регуляции давления подразделяются на системные и локальные:

Механизмы системной регуляции (регулируют уровень артериального давления):

– нервные;

– гуморальные

Механизмы локальной (местной) регуляции:

– эндотелий-зависимая регуляция;

– метаболическая регуляция;

– миогенный механизм.
«Подправляют» влияние системных механизмов, исходя из нужд кровоснабжения конкретных органов и тканей

2. Мозговые артерии – артерии мышечного типа.
Особенности их строения:
Значительно меньшая толщина стенок при более мощном развитии внутренней эластической мембраны, чем в артериях др. органов;
Наличие в области развилки артерий своеобразных мышечно-эластических образований – подушек ветвления, участвующих в регуляции мозгового кровообращения.
Вены имеют очень тонкую стенку, без мышечного слоя и эластических волокон.

  • На головной мозг приходится 20% сердечного выброса
  • В среднем мозговой кровоток составляет 50 – 60  мл/100 г. в мин.
  • Критическое значение мозгового кровотока, при котором в мозгу наступают необратимые изменения, – 18-20 мл/100 г. в мин.
  • Мозг потребляет 35 – 45 мл/100 г. в мин. кислорода  и 115 г. глюкозы в сутки
  • Объем крови практически постоянен  и составляет 75мл.

3. СИМПАТИЧЕСКАЯ ИННЕРВАЦИЯ СОСУДОВ.

Источник иннервации – верхний шейный узел симпатического ствола
Эффект – снижение внутричерепного давления, обёма крови и продукции ликвора
Медиаторы – норадреналин, нейропептид Y, АТФ.

4. Авторегуляция кровотока:

а) Если уровень активности органа не изменяется, то кровоток через него поддерживается (более или менее) постоянным, несмотря на изменения артериального давления.

б) Распределение уровня кровотока: «Более» – в почке и в  головном мозге, «Менее» – в брыжейке, желудочно-кишечном тракте, жировой ткани.

в) Обеспечивает независимость кровотока через орган от колебаний системного АД

Механизмы:

1. Метаболический (наиболее характерендля головного мозга)

2. Миогенный (наиболее характерен для почки)

Ауторегуляция кровотока в мозговых артериях (CBF) в стабильном состоянии. Точечная линия – изменения под воздействием симпатической нервной системы.

  • Функциональная система регуляции артериального давления

5. Распределение кровотока по легким.

Неравномерно, зависит от положения грудной клетки в гравитационном поле Земли:
В вертикальном положении – в легких выделяются 3 зоны (по соотношению давлений)
В горизонтальном положении легкие оксигенируются равномерно
  • Функциональная система регуляции артериального давления

Гипоксическая вазоконстрикция. Наблюдается в легких.
Возможный механизм:
снижение кислорода –> блокируются К-каналы –> деполяризация –> вход ионов кальция –> сокращение гладких мышц сосудов и пролиферации стенок сосудов.

6. Распределение кровотока в сердце.

Механические факторы играют существенную роль в коронарном кровотоке.

Трансмуральное давление в эпикарде меньше,чем в эндокарде
Кровоток:
в диастолу > в эндокарде
в систолу > в эпикарде
  • Функциональная система регуляции артериального давления

Динамика изменения работы сердца при возрастающей нагрузке.

Увеличение производительности сердца в организме происходит за счёт изменения частоты сердцебиений и ударного объема

Изменения показателей работы сердца при физической работе на велоэргометре с возрастающей мощностью

  • Функциональная система регуляции артериального давления

7. Комплексная схема регуляции давления и сосудистого тонуса.

  • Функциональная система регуляции артериального давления

8. МЕХАНИЗМЫ РЕГУЛЯЦИИ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ.

Быстрые (нейрогенные)

  • Барорецепторный рефлекс
  • Хеморецепторный рефлекс
  • Реакция Кушинга

Медленные

  • Ренин-ангиотензин-альдостероновая система
  • Рефлексы с рецепторов низкого давления

Сверхмедленные

  • Почечный функциональный механизм

Барорецепторный контроль артериального давления.

  • Функциональная система регуляции артериального давления

Афферентные пути от барорецепторов высокого давления.

А – иннервация каротидного синуса; Б – иннервация дуги аорты и аортальных телец.

  • Функциональная система регуляции артериального давления

Ответ барорецепторов  на повышение АД

  • Функциональная система регуляции артериального давления
Типичный синокаротидный рефлекс: изменение артериального давления при двустороннем сдавлении сонных артерий (после перерезки обоих блуждающих нервов)
  • Функциональная система регуляции артериального давления

Барорецепторы  дуги аорты и каротидного синуса («рецепторы высокого давления»)

Свободные нервные окончания, воспринимают растяжение стенки сосуда.

Взаимоотношения между давлением крови и импульсацией от единичного афферентного нервного волокна, идущего от каротидного синуса, при различных уровнях среднего артериального давления.

Cнижение пульсового давления в перфузируемых каротидных синусах уменьшает  импульсную активность от барорецепторов.

  • Функциональная система регуляции артериального давления

Афферентные и эфферентные пути барорефлекторной регуляции сердечно-сосудистой системы.

  • Функциональная система регуляции артериального давления

Влияние изменений давления в изолированных каротидных синусах на активность сердечных нервных волокон блуждающего и симпатического нервов собаки, находящейся под анестезией.

  • Функциональная система регуляции артериального давления

Немедленные реакции сердечно-сосудистой системы, вызванные снижением артериального давления.

  • Функциональная система регуляции артериального давления

9. Буферная роль барорефлекса: уменьшение отклонений артериального давления от среднего уровня («снижение вариабельности АД»).

10. Хеморецепторный контроль сердечно-сосудистой системы.

Слева – при отсутствии компенсации дыханием. Справа – при компенсации дыханием развивается тахикардия.

  • Функциональная система регуляции артериального давления

11. Нейроны гипоталамуса и коры головного мозга принимают участие в регуляции артериального давления.

  • Функциональная система регуляции артериального давления

12. Пример типичного синдрома белого халата – повышение больного у пациента при виде врача (зафиксировано суточным мониторированием артериального давления).

  • Функциональная система регуляции артериального давления

13. Суточная вариабельность артериального давления.

  • Функциональная система регуляции артериального давления

14. Механизмы кратковременной регуляции АД.

  • реализуются с участием автономной нервной системы;
  • «срабатывают» быстро (в течение нескольких секунд);
  • если уровень АД отклоняется надолго, адаптируются  и начинают регулировать АД на этом новом, измененном уровне
  1. Артериальный барорецепторный рефлекс
  2. Хеморефлекс
  3. Реакция на ишемию ЦНС (Реакция Кушинга)
Повышение АД в ответ на ишемию ЦНС. Реакция Кушинга в данном эксперименте вызвана повышением внутричерепного давления.
Защитная роль: обеспечивает кровоснабжение мозга при кровопотере.
Но: приводит  к нежелательному повышению АД при травме мозга, внутричерепных кровоизлияниях, отеке мозга.
  • Функциональная система регуляции артериального давления

15. РЕНИН-АНГИОТЕНЗИН- АЛЬДОСТЕРОНОВАЯ СИСТЕМА.

ЭФФЕКТЫ АНГИОТЕНЗИНА II

АТ1-рецепторы

АТ2-рецепторы

  • Вазоконстрикция
  • Стимуляция симпатической нервной системы
  • Стимуляция продукции альдостерона
  • Гипертрофия кардиомиоцитов
  • Пролиферация гладких мышц сосудов
  • Вазодилатация
  • Натрийуретическое действие
  • Уменьшение пролиферации кардиомиоцитов и гладких мышц сосудов
Читайте также:  Что такое систолическое артериальное давление чему оно равно

Компенсаторное влияние ренин-ангиотензиновой системы на уровень артериального давления после тяжелой кровопотери (компенсаторная фаза геморрагического шока).

  • Функциональная система регуляции артериального давления

Ответы предсердных рецепторов низкого давления А- и В- типов.
Рецепторы типа А расположены преимущественно в полости правого предсердия; рецепторы типа В  локализованы в устье нижней и верхней полой вен.

  • Функциональная система регуляции артериального давления

Кардио-висцеральные рефлексы с рецепторов низкого давления.

  • Функциональная система регуляции артериального давления

16. Влияние различных гормонов на артериальное давление.

  • Функциональная система регуляции артериального давления

17. Долговременная регуляция АД осуществляется почечным механизмом.

Зависимость объёма мочи, выделяемого изолированной почкой, от величины артериального давления.

Длительно АД может иметь только такой уровень, при  котором скорость мочеотделения равна скорости поступления жидкости в организм.

Сравнительные возможности различных механизмов регуляции АД в разные временные периоды от начала резкого изменения уровня давления.
Возможности почечного механизма контроля над уровнем жидкости в организме не ограничены временными рамками, действие фактора начинается через несколько недель.

Эффективность почечного регуляторного механизма стремится к бесконечности.

Источник

Факторы,
влияющие на АД:
1)
работа
сердца,
2)
просвет
сосудов,
3)
объем
циркулирующей крови (ОЦК)
и
4) вязкость
крови (при неизменной длине сосудов).
Скорость
изменения этих факторов различна.
Работа сердца и просвет сосудов с
помощью ‘ вегетативной нервной системы
изменяются очень быстро – через несколько
секунд. Гормональные влияния осуществляются
медлен­нее.
Исключение составляют адреналин и
норадреналин, выраба­тываемые
мозговым слоем надпочечников. Количество
крови в орга­низме
и ее вязкость изменяются еще медленнее.
Естественно, чем больше ОЦК, тем больше
АД (ОЦК определят величину среднего
давления наполнения – давления в
различных отделах сосудисто­го русла,
которое устанавливается, когда сердце
не работает).

Центр кровообращения

Центр
кровообращения – это совокупность
нейронов, располо­женных
в различных отделах ЦНС и обеспечивающих
приспособи­тельные реакции
сердечно-сосудистой системы в различных
усло­виях
жизнедеятельности организма.

Локализация
центра кровообращения
была
установлена с помощью метода перерезок
и раздражения. Главная часть центра
кровообращения, как и центра дыхания,
находится в продолгова­том
мозге. Нейроны, регулирующие деятельность
сердца и просвет сосудов, расположены
также в среднем и спинном мозге,
гипотала­мусе,
в коре большого мозга.

В
спинном мозге
совокупность
симпатических нейронов, рас­положенных
сегментарно в боковых рогах, представляет
собой ко­нечное
звено ЦНС, обеспечивающее передачу
сигналов к эффекто­рам.
Нейроны, регулирующие деятельность
сердца, находятся в верхних
грудных сегментах (ТЬ1-ТЬ5),
регулирующие тонус сосу­дов
– в торако-люмба^льных сегментах (С8-Ь3).
Эти нейроны сохра­няют
самостоятельную активность и после
перерезки спинного мозга в области
нижних шейных или верхних грудных
сегментов. Причем их импульсная
активность приурочена к ритму сердца
и колебаниям АД.

В
продолговатом мозге
находятся
центры блуждающих нервов, иннервирующих
сердце,
и
симпатическая
часть цент­ра кровообращения
(сердечно-сосудистого
центра), представляю­щая собой
скопление нейронов ретикулярной
формации. Взаимо­отношения
нейронов симпатического центра
значительно сложнее, чем
парасимпатического.

210

211

Функциональная система регуляции артериального давления

Во-первых,
имеются прессорная и депрессорная его
части,
причем
нейроны депрессорного отдела оказывают
тормозное влия­ние
на нейроны прессорной части центра
кровообращения (рис. 8.15), а их зоны
расположения перекрывают друг друга.

Во-вторых,
механизмы активации нейронов депрессорного
и прессорного отделов различны:
депрессорные
нейроны активи­руются афферентными
импульсами от сосудистых барорецепторов
(рецепторов растяжения, рис. 8.15 – 1), а
прессорные нейроны ак­тивируются
афферентной импульсацией от сосудистых
хеморецеп-торов и от экстерорецепторов
(рис. 8.15 – 2). Аксоны прессорных нейронов
продолговатого мозга посылают импульсы
к симпатичес­ким
нейронам спинного мозга, иннервирующим
и сердце (ТЬ1
– Тп5),
и
сосуды (С8
– Ц). Медиатором прессорных и депрессорных
нейро­нов
продолговатого мозга является
норадреналин. Медиатором пре- !
ганглионарных
симпатических нервных волокон, выходящих
из спинного мозга, является ацетилхолин.

Прессорный
отдел центра кровообращения находится
в
состо­янии тонуса

в
симпатических нервах постоянно идут
нервные импульсы с частотой 1- 3 в 1 с, при
возбуждении – до 15 в 1 с. Именно поэтому
при перерезке симпатических нервов
сосуды рас­ширяются. Активность
бульбарного отдела центра кровообра­щения
регулируется гипоталамусом и корой
большого мозга.

Гипоталамус,
как
и продолговатый мозг, содержит прессор­ные
и депрессорные зоны, нейроны которых
посылают аксоны к соответствующим
центрам продолговатого мозга и регулируют
их активность.
На уровне гипоталамуса (промежуточный
мозг) про­исходит
интеграция соматических и вегетативных
влияний нервной системы на организм –
изменения соматической деятельности
обес­печиваются
соответствующими изменениями деятельности
сердеч­но-сосудистой системы. Например,
при физической нагрузке рабо­та
сердца увеличивается, происходит
перераспределение крови в организме
за счет сужения одних сосудов (кожи,
пищеваритель­ной
системы) и расширения других (мышц,
мозга, сердца), что ве­дет
к увеличению кровотока в них, доставки
кислорода, питатель­ных веществ и
удалению продуктов обмена.

Влияние
коры большого мозга
на
системное АД. Особенно сильное
влияние на кровообращение оказывают
моторная и премо-торная
зоны. Кора большого мозга реализует
свое влияние на сер­дечно-сосудистую
систему в обеспечении приспособительных
ре­акций организма с помощью вегетативной
нервной системы (условных, безусловных
рефлексов) и гормональных механизмов
(см. раздел 10.10). Таким
образом,
кора
большого мозга и проме­жуточный мозг
оказывают модулирующее влияние на
бульбарный

212

213

Читайте также:  Стойкое повышение артериального давления называется

Функциональная система регуляции артериального давления

отдел
центра кровообращения, а при физической
нагрузке и эмо­циональном возбуждении
влияние вышележащих отделов ЦНС сильно
возрастает – наблюдается значительная
стимуляция дея­тельности
сердечно-сосудистой системы.

В
зависимости от скорости включения
и
длительности дей­ствия все механизмы
поддержания АД можно объединить в три
группы:
1) механизмы быстрого реагирования; 2)
механизмы небы­строго
реагирования (средние по скорости
включения и продолжи­тельности
действия); 3) механизмы медленного
реагирования и длительного действия.

Механизмы
быстрого реагирования

Механизмы
быстрого реагирования

это рефлекторная ре­гуляция
АД с помощью изменений работы сердца и
тонуса (просве1
та)
сосудов. Эти реакции срабатывают в
течение нескольких секунд. Причем,
в случае повышения АД работа сердца
тормозится, тонус сосудов
уменьшается – они расширяются. И то, и
другое ведет к снижению (нормализации)
АД. Если же давление снижается, то
деятельность сердца увеличивается, а
сосуды сужаются, что ведет к
увеличению – нормализации АД. Включаются
в реакцию и емко­стные
сосуды. В случае повышения АД тонус
емкостных сосудов уменьшается, что
ведет к задержке крови в венах, уменьшению
притока крови к сердцу и уменьшению
выброса крови сердцем. В случае снижения
АД тонус емкостных сосудов возрастает,
что ведет
к увеличению возврата крови к сердцу и
возрастанию выбро­са
сердцем крови.

Рецепторы,
воспринимающие изменения кровяного
давления, барорецепторы (точнее, рецепторы
растяжения) рассеяны по все­му
кровеносному руслу, но имеются их
скопления: в дуге аорты и в области
каротидного синуса (главные сосудистые
рефлексогенные зоны),
в сердце (предсердиях, желудочках,
коронарных сосудах), легком,
в стенках крупных грудных и шейных
артерий. В перечис­ленных
участках имеются многочисленные
барорецепторы,
а
в дуге аорты и каротидном синусе – баро-
и хеморецепторы.
Хотя
принцип
работы рефлексогенных зон одинаков, их
значение в регу­ляции
АД несколько различается.

Главные
сосудистые рефлексогенные зоны
расположены
в начале
напорного сосуда (дуга аорты) и в области
каротидного си­нуса
(участок, через который кровь течет в
мозг) – эти зоны обес­печивают
слежение за системным АД и снабжением
кровью мозга. Отклонение
параметров кровяного давления в области
этих реф­лексогенных зон означает
изменение АД во всем организме, что
воспринимается
барорецепторами, и центр кровообращения
вносит

214

соответствующие
коррекции. Чувствительные волокна от
бароре-цепторов каротидного синуса
идут в составе синокаротидного не­рва
(нерв Геринга – ветвь языкоглоточного
нерва, IX
пара череп­ных нервов). Барорецепторы
дуги аорты иннервируются левым
депрессорным
(аортальным) нервом, открытым И. Ционом
и К. Люд­вигом.

При
снижении АД
барорецепторы
рефлексогенных зон возбуж­даются
меньше. Это означает, что меньше поступает
импульсов от дуги аорты и синокаротидной
области в центр кровообращения. В
результате нейроны блуждающего нерва
меньше возбуждаются, и
к сердцу по эфферентным волокнам
поступает меньше импульсов, тормозящих
работу сердца, поэтому частота и сила
его сокращений возрастают
(рис. 8.16 – А). Одновременно меньше импульсов
поступает
к депрессорным нейронам симпатического
отдела цент­ра
кровообращения в продолговатом мозге
(см. рис. 8.15), вслед­ствие этого его
возбуждение ослабевает, меньше угнетаются
прес-сорные нейроны, а значит, они
посылают больше импульсов к сердечным
(Тг^-Тг^) и сосудистым (С8-Ь3)
симпатическим цент­рам
спинного мозга. Это ведет к дополнительному
усилению сер­дечной
деятельности и сужению кровеносных
сосудов (рис. 8.17). Суживаются при этом
венулы и мелкие вены, что увеличивает
возврат
крови к сердцу и ведет к усилению его
деятельности. В ре­зультате
согласованной деятельности симпатического
и парасим­патического отделов центра
кровообращения АД повышается
(нормализуется).

215

При
повышении АД
увеличивается
импульсация от барорецеп-торов в центр
кровообращения, что оказывает депрессорное
дей-

Функциональная система регуляции артериального давления

ствие
— снижение АД. Снижение повышенного АД
до уровня нор­мы осуществляется с
помощью увеличения поступления числа
им­пульсов
от рефлексогенных зон в центр
кровообращения. Усиле­ние возбуждения
нейронов блуждающего нерва (увеличение
его тонуса) ведет к угнетению сердечной
деятельности (см. рис. 8.16-Б), а усиление
возбуждения депрессорной части
симпатического центра ведет к большему
угнетению прессорного отдела
симпати­ческого
центра и к расширению резистивных и
емкостных сосудов организма.
В результате угнетения работы сердца
и расширения сосудов давление понижается.
Оно дополнительно уменьшается еще
и потому, что задержка крови в расширенных
емкостных сосу­дах ведет к уменьшению
поступления крови к сердцу и, естествен­но,
к уменьшению систолического выброса
крови.

Возбуждение
хеморецепторов
аортальной
и синокаротидной рефлексогенных
зон возникает при уменьшении напряжения
02
уве­личении
напряжения С02
и концентрации водородных ионов, т.е.
при гипоксии,
гиперкапнии и ацидозе. Импульсы от
хеморецепторов по­ступают
по тем же нервам, что и от барорецепторов,
в продолгова­тый мозг, но непосредственно
к нейронам прессорного отдела
сим­патического
центра, возбуждение которого вызывает
сужение сосудов,
усиление и ускорение сердечных сокращений
и, как след­ствие,
повышение АД. В результате кровь быстрее
поступает к лег-

216

ким,
углекислый газ обменивается на кислород.
Хеморецепторы име­ются
и в других сосудистых областях (селезенка,
почки, мозг). Из­менения
деятельности сердечно-сосудистой
системы способствуют устранению
отклонений от нормы газового состава
крови. Однако эффект
невелик, так как увеличение АД
осуществляется, главным образом,
за счет сужения сосудов и лишь частично
– в результате стимуляции
деятельности сердца.

Читайте также:  Что делать при пониженном нижнем артериальном давлении

Примерно
так же функционируют сердечные и легочная
рефлексогенные зоны.
Барорецепторы
(механорецепторы) послед­ней локализуются
в артериях малого круга кровообращения.
По­вышение
давления в сосудах легких закономерно
ведет к урежению сокращений
сердца, к падению АД в большом круге
кровообраще­ния
и увеличению кровонаполнения селезенки
(рефлекс В. В. Па-рина). Попадание в сосуды
легких (в патологических случаях)
пу­зырьков воздуха, жировых эмболов,
вызывающих раздражение механорецепторов
сосудов малого круга кровообращения,
вызыва­ет
настолько сильное угнетение сердечной
деятельности, что мо­жет привести к
летальному исходу – нормальная
физиологическая реакция переходит, в
случае чрезмерного ее проявления, в
патоло­гическую.

Механизмы
небыстрого и медленного реагирования

А.
Механизмы
небыстрого реагирования

это средние по скорости
развития реакции (минуты – десятки
минут), участвующие в
регуляции АД. Они включают четыре
основных механизма.

  1. Изменение
    скорости транскапиллярного перехода
    жид­кости,
    что
    может осуществляться в течение 5-10 мин
    в значитель­ных
    количествах. Повышение АД ведет к
    увеличению фильтраци­онного
    давления в капиллярах большого круга
    кровообращения и, естественно, к
    увеличению выхода жидкости в межклеточные
    пространства и нормализации АД.
    Увеличению выхода жидкости способствует
    также повышение кровотока в капиллярах,
    которое является следствием рефлекторного
    расширения сосудов при рос­те АД. При
    снижении АД фильтрационное давление
    в капиллярах уменьшается, вследствие
    чего повышается реабсорбция жидкости
    из тканей в капилляры, в результате АД
    возрастает. Данный меха­низм регуляции
    АД работает постоянно, особенно сильно
    он про­является после кровопотери.

  2. С
    помощью увеличения или уменьшения
    объема депониро­ванной крови,
    количество
    которой составляет 40 -50% от общего объема
    крови. Функцию депо выполняет селезенка
    (около 0,5 л крови), сосудистые сплетения
    кожи (около 1 л крови), где кровь течет
    в 10-20 раз медленнее, печень и легкие.
    Причем в селезенке

217

Функциональная система регуляции артериального давления

кровь
сгущается и содержит до 20% эритроцитов
всей крови орга­низма.
Кровь из депо может мобилизоваться и
включаться в общий кровоток
в течение нескольких минут. Это происходит
при возбуж­дении
симпато-адреналовой системы, например,
при физическом и эмоциональном
напряжении, при кровопотере.

  1. Посредством
    изменения степени выраженности
    миоген-ного тонуса сосудов
    (см.
    раздел 8.8).

  2. В
    результате изменения количества
    выработки ангио-тензина
    (рис.
    8.18).

218

Б.
Механизмы
медленного реагирования

это регуляция системного АД с помощью
изменения количества выводимой из
организма воды.
При
увеличении количества воды,
в
организ­ме, несмотря на переход части
ее из кровеносного русла в ткани, АД
возрастает по двум причинам: 1) из-за
непосредственного влия­ния
количества жидкости в сосудах – чем
больше крови, тем боль­ше давление в
сосудах – возрастает давление наполнения;
2) при накоплении жидкости в кровеносном
русле возрастает наполнение емкостных
сосудов (венул и мелких вен), что ведет
к увеличению венозного возврата крови
к сердцу и, естественно, к увеличению
выброса крови в артериальную систему
– АД повышается. При
уменьшении количества жидкости
в
организме АД уменьшает­ся. Количество
выводимой из организма воды определяется
фильт­рационным давлением в почечных
клубочках и меняется с помо­щью
гормонов.

  1. С
    увеличением фильтрационного давления
    в
    почечных клу­бочках количество
    первичной мочи может увеличиться.
    Однако регуляция выведения воды из
    организма за счет изменения фильт­рационного
    давления играет второстепенную роль,
    так как миоген-ный механизм регуляции
    почечного кровотока стабилизирует его
    в пределах
    изменения системного АД от 80 до 180 мм
    рт.ст. Главную роль
    играют гормоны.

  2. Гормональная
    регуляция.

Антидиуретический
гормон (АДГ)
участвует
в регуляции АД посредством изменения
количества выводимой из организма воды
лишь
в случае значительного его падения (о
механизме см. в разде­ле
11.5).

Альдостерон
участвует
в регуляции системного АД, во-первых,
за
счет повышения тонуса симпатической
нервной системы и повы­шения возбудимости
гладких мышц сосудов к вазоконстрикторным
веществам и, в частности, кангиотензину,
адреналину, вызывающим сужение сосудов
(по-видимому, повышается активность
а-адреноре-цепторов).
В свою очередь, ангиотензин оказывает
сильное стиму­лирующее
влияние на выработку альдостерона: так
функционирует ренин-ангиотензин-альдостероновая
система. Во-вторых,
альдосте­рон
участвует в регуляции АД за счет изменения
объема диуреза (см. раздел 11.5).

Натрийуретические
гормоны
являются
антагонистами альдо­стерона
в регуляции содержания Ыа+
в организме – они способствуют выведению
№+.
Этим гормонам, секретирующимся в
миокарде, поч­ках,
мозге, посвящено огромное количество
работ, они представля­ют собой пептиды.
Атриопептид вырабатывается кардиомиоцитами
в основном в предсердиях, частично в
желудочках. При увеличении растяжения
предсердий продукция гормона возрастает.
Это наблю­дается при увеличении объема
циркулирующей жидкости в организ-

|
ме и кровяного давления. Повышение
выведения
Ма+с
мочой
ведет
к
увеличению выведения воды, уменьшению
(нормализации) АД.

;
Снижению АД способствует’ также
сосудорасширяющее
действие
этих
гормонов,
что
осуществляется с помощью ингибирования
Са2+-каналов
сосудистых миоцитов. Атриопептид
увеличивает

I
мочеобразование также посредством
расширения сосудов почки и увеличения
фильтрации в почечных клубочках. При
уменьшении

[
объема жидкости в кровеносном русле и
снижении АД секреция

I
натрийуретических гормонов уменьшается.

Важно
отметить, что все рассмотренные механизмы
регуляции АД взаимодействуют между
собой, дополняя друг друга в случае

I
как повышения, так и понижения АД. Общая
схема функциональ-

I
ной системы, регулирующей АД, представлена
на рис. 8.19.

219

Функциональная система регуляции артериального давления

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник